gives the d-dimensional Levi-Civita totally antisymmetric tensor.



open allclose all

Basic Examples  (1)

Scope  (5)

LeviCivitaTensor returns a sparse array:

Display the result as a normal array:

Obtain the tensor as a normal array:

Build a cross product:

Obtain a higher-dimensional result as a SymmetrizedArray object:

Applications  (2)

The infinitesimal rotation matrix is the contraction of the angular velocity with a Levi-Civita tensor:

Many operations in rotational mechanics are contractions of vectors with . Torque :

Angular momentum :

The finite rotation matrix at time is the matrix exponential of :

Hodge duality can be computed by contraction with the Levi-Civita tensor:

The contraction of a TensorProduct with the Levi-Civita tensor combines Symmetrize and HodgeDual:

In dimension three, Hodge duality is often used to identify the cross product and TensorWedge of vectors:

Properties & Relations  (7)

Components of the Levi-Civita tensor coincide with the value of Signature:

LeviCivitaTensor[d,List] is equivalent to applying Normal to a Levi-Civita tensor:

A normal array contains components:

The SparseArray representation of a Levi-Civita tensor contains entries:

The SymmetrizedArray representation only stores a single component:

LeviCivitaTensor[d] has symmetry Antisymmetric[{1,,d}]:

The LeviCivitaTensor in dimension is the HodgeDual of 1 in that dimension:

The determinant Det[m] is the contraction of m's rows or columns into the Levi-Civita tensor:

Cross in dimension is the contraction of vectors into the Levi-Civita tensor:

Introduced in 2008
Updated in 2014