LinearSolveFunction
✖
LinearSolveFunction
represents a function for providing solutions to a matrix equation.
Details

- LinearSolveFunction[…] is generated by LinearSolve[m].
- LinearSolveFunction works like Function.
- LinearSolveFunction[…][b] finds the solution to the matrix equation
for the specific vector or matrix
.
- dimensions specifies the dimensions of the matrix m from which the LinearSolveFunction was constructed.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases

https://wolfram.com/xid/0n4sns32cuq-czpt04
Create a function for solving the matrix equation :

https://wolfram.com/xid/0n4sns32cuq-e10f1r


https://wolfram.com/xid/0n4sns32cuq-k49yl

Find the solution of
for a matrix
:

https://wolfram.com/xid/0n4sns32cuq-b55sfv

Scope (3)Survey of the scope of standard use cases
Do computations using exact arithmetic:

https://wolfram.com/xid/0n4sns32cuq-ji50ru


https://wolfram.com/xid/0n4sns32cuq-c2gspm

Do computations using machine‐number arithmetic:

https://wolfram.com/xid/0n4sns32cuq-fakfpt


https://wolfram.com/xid/0n4sns32cuq-i7v4fs

Do computations using 24‐digit arithmetic:

https://wolfram.com/xid/0n4sns32cuq-efuy1p


https://wolfram.com/xid/0n4sns32cuq-bo9q6n

Generalizations & Extensions (1)Generalized and extended use cases
Applications (2)Sample problems that can be solved with this function
Find the eigenvector associated with the smallest eigenvalue:

https://wolfram.com/xid/0n4sns32cuq-if535v

Approximate value of the eigenvalue:

https://wolfram.com/xid/0n4sns32cuq-pisuv3

Expressions for a finite difference approximation to the Laplacian in 2 dimensions:

https://wolfram.com/xid/0n4sns32cuq-eps6v6

A matrix approximating the Laplacian operator:

https://wolfram.com/xid/0n4sns32cuq-hw92do

A linear solve function for the matrix:

https://wolfram.com/xid/0n4sns32cuq-efcalb

An approximate solution for the Poisson equation on the unit rectangle:

https://wolfram.com/xid/0n4sns32cuq-h3nd5j

An approximate solution for the Poisson equation on the unit rectangle:

https://wolfram.com/xid/0n4sns32cuq-cea55w

Properties & Relations (2)Properties of the function, and connections to other functions
A LinearSolveFunction is effectively like a matrix inverse. A large sparse matrix:

https://wolfram.com/xid/0n4sns32cuq-ppnh13

Time to compute and memory used by the linear solve function:

https://wolfram.com/xid/0n4sns32cuq-g2n29

Time to compute and memory used by the inverse matrix:

https://wolfram.com/xid/0n4sns32cuq-c0degb

Comparison of f and the inverse matrix for a random vector b:

https://wolfram.com/xid/0n4sns32cuq-dy3l4

Create a LinearSolveFunction for a simple matrix:

https://wolfram.com/xid/0n4sns32cuq-hvqrm

Compute the inverse matrix from f:

https://wolfram.com/xid/0n4sns32cuq-lmh30y

Compute the inverse matrix using Inverse:

https://wolfram.com/xid/0n4sns32cuq-hx4pmo

Wolfram Research (2003), LinearSolveFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearSolveFunction.html.
Text
Wolfram Research (2003), LinearSolveFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearSolveFunction.html.
Wolfram Research (2003), LinearSolveFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearSolveFunction.html.
CMS
Wolfram Language. 2003. "LinearSolveFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LinearSolveFunction.html.
Wolfram Language. 2003. "LinearSolveFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LinearSolveFunction.html.
APA
Wolfram Language. (2003). LinearSolveFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LinearSolveFunction.html
Wolfram Language. (2003). LinearSolveFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LinearSolveFunction.html
BibTeX
@misc{reference.wolfram_2025_linearsolvefunction, author="Wolfram Research", title="{LinearSolveFunction}", year="2003", howpublished="\url{https://reference.wolfram.com/language/ref/LinearSolveFunction.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_linearsolvefunction, organization={Wolfram Research}, title={LinearSolveFunction}, year={2003}, url={https://reference.wolfram.com/language/ref/LinearSolveFunction.html}, note=[Accessed: 04-April-2025
]}