MagnetostaticPDEComponent

MagnetostaticPDEComponent[vars,pars]

yields a current-free magnetostatic PDE term with variables vars and pars.

Details

  • MagnetostaticPDEComponent is typically used to generate a magnetostatic equation for permanent magnets with model variables vars and model parameters pars.
  • MagnetostaticPDEComponent returns a sum of differential operators to be used as a part of partial differential equations:
  • MagnetostaticPDEComponent models static magnetic fields produced by permanent magnets and other current-free magnetic sources.
  • MagnetostaticPDEComponent models magnetostatic phenomena with the dependent variable and the magnetic scalar potential. is in units of amperes [TemplateBox[{InterpretationBox[, 1], "A", amperes, "Amperes"}, QuantityTF]], independent variables in units of [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]].
  • Stationary variables vars are vars={Vm[x1,,xn],{x1,,xn}}.
  • MagnetostaticPDEComponent generally does not produces a time-dependent PDE.
  • To model permanent magnets, the MagnetostaticPDEComponent equation is given as:
  • is the vacuum permeability in units of [TemplateBox[{InterpretationBox[, 1], {"H", , "/", , "m"}, henries per meter, {{(, "Henries", )}, /, {(, "Meters", )}}}, QuantityTF]] and the magnetization vector in units of [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , "m"}, amperes per meter, {{(, "Amperes", )}, /, {(, "Meters", )}}}, QuantityTF]].
  • The magnetization vector specifies the magnetic dipole moment per unit volume within a material, indicating the strength and direction of its magnetic properties.
  • An alternative to the magnetization vector , is the remanent magnetic flux density vector in units of [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , {"m", ^, 2}}, webers per meter squared, {{(, "Webers", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]]. The MagnetostaticPDEComponent equation is given as:
  • is the unitless recoil permeability.
  • For linear materials, like iron, the MagnetostaticPDEComponent equation simplifies to:
  • is the unitless relative permeability.
  • can be isotropic, orthotropic or anisotropic.
  • can be a function of the magnetic field and describe nonlinear materials.
  • The implicit default boundary condition for the magnetostatic model is a 0 MagneticFluxDensityValue.
  • The units of the magnetostatic model terms are in [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , {"m", ^, 3}}, webers per meter cubed, {{(, "Webers", )}, /, {(, {"Meters", ^, 3}, )}}}, QuantityTF]].
  • The following parameters pars can be given:
  • parameterdefaultsymbol
    "Magnetization"{0,}, magnetization vector in [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , "m"}, amperes per meter, {{(, "Amperes", )}, /, {(, "Meters", )}}}, QuantityTF]]
    "RegionSymmetry"None
    "RelativePermeability"
  • , unitless relative permeability
  • "RemanentMagneticFluxDensity"{0,}, remanent magnetic flux density in [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , {"m", ^, 2}}, webers per meter squared, {{(, "Webers", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]]
    "Thickness"1, thickness in [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]]
    "VacuumPermeability", vacuum permeability in [TemplateBox[{InterpretationBox[, 1], {"H", , "/", , "m"}, henries per meter, {{(, "Henries", )}, /, {(, "Meters", )}}}, QuantityTF]]
  • All parameters may depend on the spatial variable and dependent variable .
  • The number of independent variables determines the dimensions of or and the length of vectors , and .
  • The models are available in a 2D, a 2D axisymmetric and a 3D form.
  • A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
  • "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
  • dimensionreductionequation
    2D
  • In 2D, when a "Thickness" is specified, the MagnetostaticPDEComponent equation is given as:
  • The input specification for the parameters is exactly the same as for their corresponding operator terms.
  • If no parameters are specified, the default magnetostatic PDE is:
  • If the MagnetostaticPDEComponent depends on parameters that are specified in the association pars as ,keypi,pivi,], the parameters are replaced with .

Examples

open allclose all

Basic Examples  (3)

Define a default magnetostatic PDE model:

Set up a magnetostatic model with particular material parameters:

To model a permanent magnet in 2D with a rectangular cross section, define the mesh to use:

Visualize the internal boundaries of the magnet region:

Solve the magnetostatic PDE model with a magnet transversely magnetized in the direction of the axis:

Visualize the magnetic field:

Scope  (3)

Specify a magnetostatic PDE with a magnetization vector of in units of [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , "m"}, amperes per meter, {{(, "Amperes", )}, /, {(, "Meters", )}}}, QuantityTF]]:

Define a symbolic 2D axisymmetric magnetostatic PDE:

Define a 3D magnetostatic model with particular material parameters:

Applications  (1)

To model a 3D cylinder permanent magnet, set up variables:

Define the magnet region of height [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]] and radius [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]]:

Define the magnetization vector:

Set up boundary conditions:

Set up the mesh with a sphere of air of [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]] that represents the surrounding volume:

Visualize the magnet cylinder that is inside the mesh:

Set up the magnetostatIc PDE component:

Solve the PDE:

Visualize the magnetic field:

Wolfram Research (2025), MagnetostaticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html.

Text

Wolfram Research (2025), MagnetostaticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html.

CMS

Wolfram Language. 2025. "MagnetostaticPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html.

APA

Wolfram Language. (2025). MagnetostaticPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html

BibTeX

@misc{reference.wolfram_2024_magnetostaticpdecomponent, author="Wolfram Research", title="{MagnetostaticPDEComponent}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html}", note=[Accessed: 15-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_magnetostaticpdecomponent, organization={Wolfram Research}, title={MagnetostaticPDEComponent}, year={2025}, url={https://reference.wolfram.com/language/ref/MagnetostaticPDEComponent.html}, note=[Accessed: 15-January-2025 ]}