MersennePrimeExponent
gives the n Mersenne prime exponent.
Details
- A Mersenne prime exponent is a prime number p for which the Mersenne number is prime.
- In MersennePrimeExponent[n], n must be a positive integer.
- As of this version of the Wolfram Language, only 48 Mersenne prime exponents have definite ranking. Four more Mersenne prime exponents are known, but their ranking is still unknown. MersennePrimeExponent[n] will attempt to find Mersenne prime exponents for n larger than 48, but cannot be expected to return results in a reasonable time.
Examples
open allclose allBasic Examples (1)
Scope (1)
MersennePrimeExponent automatically threads over lists:
Properties & Relations (5)
Mersenne prime exponents generate even perfect numbers:
Triangular numbers of Mersenne primes generate even perfect numbers:
Hexagonal numbers related to Mersenne prime exponents generate even perfect numbers:
Mersenne prime exponents generate superperfect numbers:
A trinomial whose order is a Mersenne prime exponent is primitive modulo 2 if and only if it is irreducible:
Text
Wolfram Research (2016), MersennePrimeExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MersennePrimeExponent.html (updated 2024).
CMS
Wolfram Language. 2016. "MersennePrimeExponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/MersennePrimeExponent.html.
APA
Wolfram Language. (2016). MersennePrimeExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MersennePrimeExponent.html