WOLFRAM

represents an outward-pointing unit normal vector at the point on the boundary of a filled region.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Set up a symbolic electric current density boundary condition with a non-surface normal current density:

Out[1]=1

Specify a differential equation operator :

Out[1]=1

Specify a region:

Out[2]=2

On the left, a NeumannValue is set up. The default Neumann boundary integrand for this equation is . To model a boundary integrand of the form , a NeumannValue is set up:

Out[3]=3

Visualize the solution:

Out[4]=4

Scope  (5)Survey of the scope of standard use cases

For nonconservative mass transport, boundary conditions like MassImpermeableBoundaryValue can produce NeumannBoundaryUnitNormal. Set up an impermeable boundary condition for a nonconservative model:

Out[1]=1

NeumannBoundaryUnitNormal can be used in NIntegrate to compute the flux through a boundary. Solve a Poisson equation on a unit Disk:

Out[1]=1

Visualize the solution:

Out[2]=2

Compute the total flux through the boundary of the region through the boundary region:

Out[3]=3

Compute the total flux through the boundary of a subregion:

Out[4]=4

Specify a time-dependent differential equation operator :

Specify a region:

On the left, a NeumannValue is set up. The default Neumann boundary integrand for this equation is . To model a boundary integrand of the form , a NeumannValue is set up:

Out[3]=3

Use a Neumann 0 boundary condition and solve the equation again:

Out[4]=4

Inspect how the solutions start to differ over time:

Out[5]=5

Create a tangential for a NeumannValue:

Out[1]=1

Make use of an Indexed component, the component, of a NeumannBoundaryUnitNormal to compute a NeumannValue:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

The AcousticRadiationValue makes use of a NeumannBoundaryUnitNormal to automatically compute the sound direction vector. Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

Set up the equation with a radiation boundary at the left end and an acoustic absorbing boundary at the right end:

Out[3]=3

Set up the parametric solver:

Convert the solution to the time domain and visualize the solution in the frequency domain at various frequencies :

Out[5]=5

Properties & Relations  (1)Properties of the function, and connections to other functions

The boundary unit normal is computed by solving a Poisson equation over the region and specifying 0 Dirichlet conditions. Compute a Poisson equation over a unit Disk:

Compute the normalized gradient of the potential:

Visualize the unit normal:

Out[3]=3
Wolfram Research (2025), NeumannBoundaryUnitNormal, Wolfram Language function, https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.
Wolfram Research (2025), NeumannBoundaryUnitNormal, Wolfram Language function, https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.

Text

Wolfram Research (2025), NeumannBoundaryUnitNormal, Wolfram Language function, https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.

Wolfram Research (2025), NeumannBoundaryUnitNormal, Wolfram Language function, https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.

CMS

Wolfram Language. 2025. "NeumannBoundaryUnitNormal." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.

Wolfram Language. 2025. "NeumannBoundaryUnitNormal." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html.

APA

Wolfram Language. (2025). NeumannBoundaryUnitNormal. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html

Wolfram Language. (2025). NeumannBoundaryUnitNormal. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html

BibTeX

@misc{reference.wolfram_2025_neumannboundaryunitnormal, author="Wolfram Research", title="{NeumannBoundaryUnitNormal}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html}", note=[Accessed: 13-April-2025 ]}

@misc{reference.wolfram_2025_neumannboundaryunitnormal, author="Wolfram Research", title="{NeumannBoundaryUnitNormal}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html}", note=[Accessed: 13-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_neumannboundaryunitnormal, organization={Wolfram Research}, title={NeumannBoundaryUnitNormal}, year={2025}, url={https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html}, note=[Accessed: 13-April-2025 ]}

@online{reference.wolfram_2025_neumannboundaryunitnormal, organization={Wolfram Research}, title={NeumannBoundaryUnitNormal}, year={2025}, url={https://reference.wolfram.com/language/ref/NeumannBoundaryUnitNormal.html}, note=[Accessed: 13-April-2025 ]}