Not
✖
Not
Details

- Not[expr] can be input in StandardForm and InputForm as ¬expr. The character
can be entered as
!
,
not
, or ∖[Not]. »
- Not gives symbolic results when necessary, applying various simplification rules to them.
- If you are using the Wolfram System with a text‐based front end, then you cannot use the notation !expr for Not[expr] if it appears at the very beginning of a line. In this case, !expr is interpreted as a shell escape. »
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases
Double negation simplifies to the identity:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-fjou75
Out[1]=1

Negate equations and inequalities:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-gjlsdx
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0dsma-ngqjin
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0dsma-cp9n0v
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0dsma-fsivv6
Out[2]=2

TraditionalForm formatting:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-8vcqu

Applications (2)Sample problems that can be solved with this function
Properties & Relations (4)Properties of the function, and connections to other functions
Truth table for Not:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-ib02ro
Out[1]=1

Use BooleanConvert to simplify the negation of Implies:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-mia1i
Out[1]=1

De Morgan's laws relate And, Or, and Not:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-d8jn2e
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0dsma-okqqa7
Out[2]=2

Negation of the condition for Boole function:
In[1]:=1

✖
https://wolfram.com/xid/0dsma-jec7qu
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0dsma-yhneo
Out[2]=2

Wolfram Research (1988), Not, Wolfram Language function, https://reference.wolfram.com/language/ref/Not.html (updated 1996).
✖
Wolfram Research (1988), Not, Wolfram Language function, https://reference.wolfram.com/language/ref/Not.html (updated 1996).
Text
Wolfram Research (1988), Not, Wolfram Language function, https://reference.wolfram.com/language/ref/Not.html (updated 1996).
✖
Wolfram Research (1988), Not, Wolfram Language function, https://reference.wolfram.com/language/ref/Not.html (updated 1996).
CMS
Wolfram Language. 1988. "Not." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/Not.html.
✖
Wolfram Language. 1988. "Not." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/Not.html.
APA
Wolfram Language. (1988). Not. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Not.html
✖
Wolfram Language. (1988). Not. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Not.html
BibTeX
✖
@misc{reference.wolfram_2025_not, author="Wolfram Research", title="{Not}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/Not.html}", note=[Accessed: 16-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_not, organization={Wolfram Research}, title={Not}, year={1996}, url={https://reference.wolfram.com/language/ref/Not.html}, note=[Accessed: 16-April-2025
]}