Logic & Boolean Algebra

The Wolfram Language represents Boolean expressions in symbolic form, so they can not only be evaluated, but also be symbolically manipulated and transformed. Incorporating state-of-the-art quantifier elimination, satisfiability, and equational logic theorem proving, the Wolfram Language provides a powerful framework for investigations based on Boolean algebra.

Logical Operators

And(&&, )  ▪  Or(||, )  ▪  Not(!,¬)  ▪  Nand()  ▪  Nor()  ▪  Xor()  ▪  Implies()  ▪  Equivalent()  ▪  Equal(==)  ▪  Unequal(!=)  ▪  ...

True, False symbolic truth values

Boole convert symbolic truth values to 0 and 1

AllTrue  ▪  AnyTrue  ▪  NoneTrue

Boolean Computation »

BooleanFunction general Boolean function

BooleanConvert  ▪  BooleanMinimize  ▪  SatisfiableQ  ▪  ...

Mathematical Logic

FullSimplify simplify logic expressions and prove theorems

ForAll (), Exists () quantifiers

Resolve  ▪  Reduce  ▪  FindInstance

Automated Theorem Proving

FindEquationalProof generate representations of proofs in equational logic

ProofObject symbolic representation of proofs suitable for analysis and manipulation

Boolean Vector Operations

Nearest, FindClusters operate on Boolean vectors

HammingDistance  ▪  MatchingDissimilarity  ▪  ...

Related Tutorials