And
✖
And
Details

- And[e1,e2,…] can be input in StandardForm and InputForm as e1∧e2∧…. The character ∧ can be entered as
&&
,
and
, or \[And]. »
- And has attribute HoldAll and explicitly controls the evaluation of its arguments. In e1&&e2&&…, the ei are evaluated in order, stopping if any of them are found to be False. »
- And gives symbolic results when necessary, removing initial arguments that are True. »
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0hawi-cfai82


https://wolfram.com/xid/0hawi-yi6vv


https://wolfram.com/xid/0hawi-geut30


https://wolfram.com/xid/0hawi-cyw7h8

Scope (5)Survey of the scope of standard use cases
And works with any number of arguments:

https://wolfram.com/xid/0hawi-hb9gh

And is associative:

https://wolfram.com/xid/0hawi-d7h0mk

And with explicit True or False arguments will simplify:

https://wolfram.com/xid/0hawi-i4iqla


https://wolfram.com/xid/0hawi-j63r74

And evaluates its arguments in order, stopping when an argument evaluates to False:

https://wolfram.com/xid/0hawi-dmd6x9


https://wolfram.com/xid/0hawi-dltf5i

The order of arguments may be important:

https://wolfram.com/xid/0hawi-lu6s7g


https://wolfram.com/xid/0hawi-j8qidu


Symbolic transformations will not preserve argument ordering:

https://wolfram.com/xid/0hawi-k00ay


https://wolfram.com/xid/0hawi-c40ywc

TraditionalForm formatting:

https://wolfram.com/xid/0hawi-d2raes

Applications (6)Sample problems that can be solved with this function
Combine conditions in Wolfram Language code:

https://wolfram.com/xid/0hawi-poaj84

https://wolfram.com/xid/0hawi-jlvdi

If an argument of And evaluates to False, any subsequent arguments are not evaluated:

https://wolfram.com/xid/0hawi-b6s974

The argument order in And matters; if the last two arguments are reversed, I>0 is evaluated:

https://wolfram.com/xid/0hawi-m52z05

https://wolfram.com/xid/0hawi-f1vek



https://wolfram.com/xid/0hawi-8d9x7

Combine equations and inequalities; And is used both in the input and in the output:

https://wolfram.com/xid/0hawi-p9ndzd

Use And to combine conditions:

https://wolfram.com/xid/0hawi-ctbbhn


https://wolfram.com/xid/0hawi-bbdoy

A cellular automaton based on And:

https://wolfram.com/xid/0hawi-gddzdp

Find the area of the intersection of sets given by algebraic conditions:

https://wolfram.com/xid/0hawi-fe4ca9


https://wolfram.com/xid/0hawi-c14dt7

Properties & Relations (8)Properties of the function, and connections to other functions
Truth table for binary And:

https://wolfram.com/xid/0hawi-ib02ro

Ternary And:

https://wolfram.com/xid/0hawi-cwl4xo


https://wolfram.com/xid/0hawi-9ob000

And with a single argument will return the evaluated argument regardless of value:

https://wolfram.com/xid/0hawi-g7dcos

&& has higher precedence than :

https://wolfram.com/xid/0hawi-lqm1sh

Use BooleanConvert to expand And with respect to Or:

https://wolfram.com/xid/0hawi-fcn3e0


https://wolfram.com/xid/0hawi-kk4ggu

De Morgan's laws relate And, Or, and Not:

https://wolfram.com/xid/0hawi-d8jn2e


https://wolfram.com/xid/0hawi-okqqa7

Conjunction of conditions corresponds to the product or Min of Boole functions:

https://wolfram.com/xid/0hawi-jec7qu


https://wolfram.com/xid/0hawi-yhneo


https://wolfram.com/xid/0hawi-bxl6ec


https://wolfram.com/xid/0hawi-d6d5kd

Use Thread to thread over lists:

https://wolfram.com/xid/0hawi-ci7k8


https://wolfram.com/xid/0hawi-b1du8

Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).
Text
Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).
Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).
CMS
Wolfram Language. 1988. "And." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/And.html.
Wolfram Language. 1988. "And." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/And.html.
APA
Wolfram Language. (1988). And. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/And.html
Wolfram Language. (1988). And. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/And.html
BibTeX
@misc{reference.wolfram_2025_and, author="Wolfram Research", title="{And}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/And.html}", note=[Accessed: 16-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_and, organization={Wolfram Research}, title={And}, year={1996}, url={https://reference.wolfram.com/language/ref/And.html}, note=[Accessed: 16-April-2025
]}