WOLFRAM

e1&&e2&&

is the logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True.

Details

  • And[e1,e2,] can be input in StandardForm and InputForm as e1e2. The character can be entered as &&, and, or \[And]. »
  • And has attribute HoldAll and explicitly controls the evaluation of its arguments. In e1&&e2&&, the ei are evaluated in order, stopping if any of them are found to be False. »
  • And gives symbolic results when necessary, removing initial arguments that are True. »

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Combine assertions with &&:

Out[1]=1

A symbolic conjunction:

Out[1]=1

A system of equations:

Out[1]=1

Enter using and:

Out[1]=1

Scope  (5)Survey of the scope of standard use cases

And works with any number of arguments:

Out[1]=1

And is associative:

And with explicit True or False arguments will simplify:

Out[1]=1
Out[2]=2

And evaluates its arguments in order, stopping when an argument evaluates to False:

Out[1]=1
Out[2]=2

The order of arguments may be important:

Out[3]=3
Out[4]=4

Symbolic transformations will not preserve argument ordering:

Out[1]=1
Out[2]=2

TraditionalForm formatting:

Applications  (6)Sample problems that can be solved with this function

Combine conditions in Wolfram Language code:

Out[2]=2

If an argument of And evaluates to False, any subsequent arguments are not evaluated:

Out[3]=3

The argument order in And matters; if the last two arguments are reversed, I>0 is evaluated:

Out[5]=5

Combine assumptions:

Out[1]=1

Combine equations and inequalities; And is used both in the input and in the output:

Out[1]=1

Use And to combine conditions:

Out[1]=1
Out[2]=2

A cellular automaton based on And:

Out[1]=1

Find the area of the intersection of sets given by algebraic conditions:

Out[1]=1

This shows the set:

Out[2]=2

Properties & Relations  (8)Properties of the function, and connections to other functions

Truth table for binary And:

Out[2]=2

Ternary And:

Out[3]=3

Zero-argument And is True:

Out[1]=1

And with a single argument will return the evaluated argument regardless of value:

Out[1]=1

&& has higher precedence than ||:

Use BooleanConvert to expand And with respect to Or:

Out[1]=1
Out[2]=2

De Morgan's laws relate And, Or, and Not:

Out[1]=1
Out[2]=2

Conjunction of conditions corresponds to the product or Min of Boole functions:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Use Thread to thread over lists:

Out[1]=1
Out[2]=2
Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).
Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).

Text

Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).

Wolfram Research (1988), And, Wolfram Language function, https://reference.wolfram.com/language/ref/And.html (updated 1996).

CMS

Wolfram Language. 1988. "And." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/And.html.

Wolfram Language. 1988. "And." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/And.html.

APA

Wolfram Language. (1988). And. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/And.html

Wolfram Language. (1988). And. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/And.html

BibTeX

@misc{reference.wolfram_2025_and, author="Wolfram Research", title="{And}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/And.html}", note=[Accessed: 16-April-2025 ]}

@misc{reference.wolfram_2025_and, author="Wolfram Research", title="{And}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/And.html}", note=[Accessed: 16-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_and, organization={Wolfram Research}, title={And}, year={1996}, url={https://reference.wolfram.com/language/ref/And.html}, note=[Accessed: 16-April-2025 ]}

@online{reference.wolfram_2025_and, organization={Wolfram Research}, title={And}, year={1996}, url={https://reference.wolfram.com/language/ref/And.html}, note=[Accessed: 16-April-2025 ]}