

Min
Examples
open all close allScope (29)
Numerical Evaluation (7)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
The minimum of all elements of a matrix:
For Interval objects, Min gives the minimum element in all intervals:
For CenteredInterval objects, Min[Δ1,Δ2] gives an interval containing Min[a1,a2] for any ai∈Δi:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array using automatic threading:
Or compute the matrix Min function using MatrixFunction:
Specific Values (5)
Visualization (3)
Function Properties (9)
Min is only defined for real-valued inputs:
The range of Min is all real numbers:
Min effectively flattens out all lists:
Basic symbolic simplification is done automatically:
Additional simplification can be done using Simplify:
Multi-argument Min is generally not an analytic function:
It will have singularities where the arguments cross, but it will be continuous:
Min can have any monotonicity depending on its arguments:
Min can have any sign depending on its arguments:
Differentiation and Integration (5)
First derivative with respect to x:
Higher derivatives with respect to x:
Formula for the derivative with respect to x:
Compute the indefinite integral using Integrate:
Applications (4)
Properties & Relations (6)
Possible Issues (2)
See Also
Max MinMax TakeSmallest MinimalBy RankedMin RankedMax Ordering Minimize FindMinimum MinDetect Clip UpTo
Function Repository: ParetoListMinima
Tech Notes
Related Guides
-
▪
- Numerical Functions ▪
- Elementary Functions ▪
- Numerical Data ▪
- Math & Counting Operations on Lists ▪
- Descriptive Statistics ▪
- Elements of Lists ▪
- Mathematical Functions ▪
- Computation with Structured Datasets ▪
- Robust Descriptive Statistics ▪
- GPU Computing ▪
- GPU Computing with Apple ▪
- GPU Computing with NVIDIA
History
Introduced in 1988 (1.0) | Updated in 2003 (5.0) ▪ 2021 (13.0)
Text
Wolfram Research (1988), Min, Wolfram Language function, https://reference.wolfram.com/language/ref/Min.html (updated 2021).
CMS
Wolfram Language. 1988. "Min." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Min.html.
APA
Wolfram Language. (1988). Min. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Min.html
BibTeX
@misc{reference.wolfram_2025_min, author="Wolfram Research", title="{Min}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/Min.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_min, organization={Wolfram Research}, title={Min}, year={2021}, url={https://reference.wolfram.com/language/ref/Min.html}, note=[Accessed: 14-August-2025]}