WOLFRAM

gives the number of prime factors counting multiplicities in n.

Details and Options

  • Integer mathematical function, suitable for both symbolic and numerical manipulation.
  • PrimeOmega gives the number of prime factors of an integer with multiplicity.
  • For a number with a unit and primes, PrimeOmega[n] returns k1++km.
  • With the setting GaussianIntegers->True, PrimeOmega gives the number of Gaussian prime factors.
  • PrimeOmega[m+In] automatically works over Gaussian integers.

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Compute PrimeOmega at 30:

Out[1]=1

Plot the PrimeOmega sequence for the first 100 numbers:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

Numerical Evaluation  (4)

PrimeOmega works over integers:

Out[2]=2

Gaussian integers:

Out[1]=1
Out[2]=2

Compute for large integers:

Out[1]=1

PrimeOmega threads over lists:

Out[1]=1

Symbolic Manipulation  (4)

TraditionalForm formatting:

Reduce expressions:

Out[1]=1

Solve equations:

Out[1]=1

Identify the PrimeOmega sequence:

Out[1]=1
Out[2]=2

Options  (1)Common values & functionality for each option

GaussianIntegers  (1)

Compute PrimeOmega over integers:

Out[3]=3

Gaussian integers:

Out[1]=1

Applications  (6)Sample problems that can be solved with this function

Basic Applications  (2)

Table of the values of PrimeOmega for the integers up to 100:

Out[2]=2

Histogram of the values of PrimeOmega:

Out[1]=1

Number Theory  (4)

Use PrimeOmega to test for a prime number:

Out[2]=2
Out[2]=2

Use PrimeOmega to compute LiouvilleLambda:

Out[1]=1

Compare with:

Out[2]=2

Plot the average over values of PrimeOmega for different ranges of integer arguments:

Out[1]=1

The Fourier statistics of the PrimeOmega sequence:

Out[1]=1

Properties & Relations  (5)Properties of the function, and connections to other functions

Use FactorInteger to find the number of prime factors counting multiplicities:

Out[4]=4
Out[8]=8

PrimeOmega is a completely additive function:

Out[1]=1

PrimeOmega gives the exponent for a prime power:

Out[1]=1
Out[2]=2

PrimeOmega and PrimeNu are equivalent when the argument is square-free:

Out[1]=1
Out[2]=2

PrimeOmega is always greater than or equal to PrimeNu:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

PrimeOmega is not defined at 0:

Out[1]=1

Neat Examples  (2)Surprising or curious use cases

Plot the arguments of the Fourier transform of PrimeOmega:

Out[2]=2

Plot the Ulam Spiral of PrimeOmega:

Out[2]=2
Wolfram Research (2008), PrimeOmega, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeOmega.html.
Wolfram Research (2008), PrimeOmega, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeOmega.html.

Text

Wolfram Research (2008), PrimeOmega, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeOmega.html.

Wolfram Research (2008), PrimeOmega, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeOmega.html.

CMS

Wolfram Language. 2008. "PrimeOmega." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PrimeOmega.html.

Wolfram Language. 2008. "PrimeOmega." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PrimeOmega.html.

APA

Wolfram Language. (2008). PrimeOmega. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PrimeOmega.html

Wolfram Language. (2008). PrimeOmega. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PrimeOmega.html

BibTeX

@misc{reference.wolfram_2025_primeomega, author="Wolfram Research", title="{PrimeOmega}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/PrimeOmega.html}", note=[Accessed: 01-May-2025 ]}

@misc{reference.wolfram_2025_primeomega, author="Wolfram Research", title="{PrimeOmega}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/PrimeOmega.html}", note=[Accessed: 01-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_primeomega, organization={Wolfram Research}, title={PrimeOmega}, year={2008}, url={https://reference.wolfram.com/language/ref/PrimeOmega.html}, note=[Accessed: 01-May-2025 ]}

@online{reference.wolfram_2025_primeomega, organization={Wolfram Research}, title={PrimeOmega}, year={2008}, url={https://reference.wolfram.com/language/ref/PrimeOmega.html}, note=[Accessed: 01-May-2025 ]}