SinIntegral

SinIntegral[z]

gives the sine integral function ).

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • .
  • SinIntegral[z] is an entire function of with no branch cut discontinuities.
  • For certain special arguments, SinIntegral automatically evaluates to exact values.
  • SinIntegral can be evaluated to arbitrary numerical precision.
  • SinIntegral automatically threads over lists.

Examples

open allclose all

Basic Examples  (6)

Evaluate numerically:

Plot :

Plot over a subset of the complexes:

Differentiate :

Series expansion at the origin:

Asymptotic expansion at Infinity:

Scope  (29)

Numerical Evaluation  (4)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate SinIntegral efficiently at high precision:

SinIntegral threads elementwise over lists and matrices:

Specific Values  (3)

Value at a fixed point:

Values at infinity:

Find a local maximum as a root of (dTemplateBox[{x}, SinIntegral])/(dx)=0:

Visualization  (2)

Plot the SinIntegral function:

Plot the real part of TemplateBox[{{x, +, {ⅈ,  , y}}}, SinIntegral]:

Plot the imaginary part of TemplateBox[{{x, +, {ⅈ,  , y}}}, SinIntegral]:

Function Properties  (3)

SinIntegral is defined for all real and complex values:

Approximate function range of SinIntegral:

SinIntegral is an odd function:

Differentiation  (3)

First derivative:

Higher derivatives:

Formula for the ^(th) derivative:

Integration  (3)

Indefinite integral of SinIntegral:

Definite integral of an odd integrand over an interval centered at the origin is 0:

More integrals:

Series Expansions  (4)

Taylor expansion for SinIntegral:

Plot the first three approximations for SinIntegral around :

General term in the series expansion of SinIntegral:

Find series expansion at infinity:

Give the result for an arbitrary symbolic direction :

SinIntegral can be applied to power series:

Function Identities and Simplifications  (3)

Use FullSimplify to simplify expressions containing sine integrals:

Simplify expressions to SinIntegral:

Argument simplifications:

Function Representations  (4)

Series representation of SinIntegral:

SinIntegral can be represented in terms of MeijerG:

SinIntegral can be represented as a DifferentialRoot:

TraditionalForm formatting:

Generalizations & Extensions  (1)

Find series expansions at infinity:

Give the result for an arbitrary symbolic direction :

Applications  (3)

Plot the absolute value in the complex plane:

Real part of the EulerHeisenberg effective action:

Find a leading term in :

Gibbs phenomenon for a square wave:

Magnify the overshoot region:

Compute the asymptotic overshoot:

Properties & Relations  (7)

Parity transformation is automatically applied:

Use FullSimplify to simplify expressions containing sine integrals:

Find a numerical root:

Obtain SinIntegral from integrals and sums:

Obtain SinIntegral from a differential equation:

Calculate the Wronskian:

Compare with Wronskian:

Integrals:

Laplace transform:

Possible Issues  (2)

SinIntegral can take large values for moderatesize arguments:

A larger setting for $MaxExtraPrecision can be needed:

Neat Examples  (1)

Nested integrals:

Introduced in 1991
 (2.0)