SymbolicIdentityArray
✖
SymbolicIdentityArray
represents an n1×n2×…×n1×n2×… array with elements ai1,i2,…,j1,j2,… equal to 1 if all ikjk, and 0 otherwise.
Details

- Valid dimension specifications ni in SymbolicIdentityArray[{n1,n2,…}] are positive integers. It is also possible to work with symbolic dimension specifications.
- SymbolicIdentityArray may be produced by differentiation involving ArraySymbol objects.
- For an array a=SymbolicIdentityArray[{n1,n2,…}] with positive integer dimension specifications ni, Normal[a] converts a to an explicit array. SparseArray[a] converts a to a SparseArray.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
The derivative of a symbolic array variable with respect to itself is a SymbolicIdentityArray:

https://wolfram.com/xid/0mk1bi3vo1qy-vp0kt

https://wolfram.com/xid/0mk1bi3vo1qy-vxjxp

Create a SymbolicIdentityArray with explicit numeric dimensions:

https://wolfram.com/xid/0mk1bi3vo1qy-cfqmya

Convert a to an explicit array:

https://wolfram.com/xid/0mk1bi3vo1qy-d2sqr7

Convert a to a SparseArray:

https://wolfram.com/xid/0mk1bi3vo1qy-wr1qc

Scope (2)Survey of the scope of standard use cases
Properties & Relations (5)Properties of the function, and connections to other functions
SymbolicIdentityArray gives a symbolic representation of the array:

https://wolfram.com/xid/0mk1bi3vo1qy-z7pn2i

Use Normal to convert a to an explicit array:

https://wolfram.com/xid/0mk1bi3vo1qy-4mh225

IdentityMatrix[n] gives an explicit version of SymbolicIdentityArray[{n}]:

https://wolfram.com/xid/0mk1bi3vo1qy-b651zf


https://wolfram.com/xid/0mk1bi3vo1qy-p2dtqe


https://wolfram.com/xid/0mk1bi3vo1qy-kcbwdh

SymbolicIdentityArray is a special case of SymbolicDeltaProductArray:

https://wolfram.com/xid/0mk1bi3vo1qy-60ex52


https://wolfram.com/xid/0mk1bi3vo1qy-el9d6c


https://wolfram.com/xid/0mk1bi3vo1qy-cakgwq

The derivative of a symbolic array variable with respect to itself is a SymbolicIdentityArray:

https://wolfram.com/xid/0mk1bi3vo1qy-oziq7k

https://wolfram.com/xid/0mk1bi3vo1qy-p0fjd4

SymbolicIdentityArray objects are identity elements for ArrayDot:

https://wolfram.com/xid/0mk1bi3vo1qy-jl9lq8


https://wolfram.com/xid/0mk1bi3vo1qy-qpo695


https://wolfram.com/xid/0mk1bi3vo1qy-mavstq

Wolfram Research (2024), SymbolicIdentityArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.
Text
Wolfram Research (2024), SymbolicIdentityArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.
Wolfram Research (2024), SymbolicIdentityArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.
CMS
Wolfram Language. 2024. "SymbolicIdentityArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.
Wolfram Language. 2024. "SymbolicIdentityArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.
APA
Wolfram Language. (2024). SymbolicIdentityArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html
Wolfram Language. (2024). SymbolicIdentityArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html
BibTeX
@misc{reference.wolfram_2025_symbolicidentityarray, author="Wolfram Research", title="{SymbolicIdentityArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html}", note=[Accessed: 15-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_symbolicidentityarray, organization={Wolfram Research}, title={SymbolicIdentityArray}, year={2024}, url={https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html}, note=[Accessed: 15-April-2025
]}