ToFiniteField

ToFiniteField[k,ff]

converts the integer k to an element of the prime subfield of the finite field ff.

ToFiniteField[expr,ff]

converts the coefficients of the rational expression expr to elements of the finite field ff.

ToFiniteField[expr,ff,t]

converts the coefficients of the rational expression expr to elements of the finite field ff, with t representing the field generator.

Details

Examples

open allclose all

Basic Examples  (4)

Convert an integer to an element of the prime subfield of a finite field:

Use t to represent the field generator:

Convert the coefficients of a rational expression to elements in the prime subfield of a finite field:

Use t to represent the field generator:

Scope  (4)

Convert integers and rational numbers to elements of the prime subfield of a finite field:

Convert a polynomial in t to a a polynomial in the field generator:

Convert the coefficients of a polynomial to elements in the prime subfield of a finite field:

Convert the coefficients of a rational function, with t used to represent the field generator:

Properties & Relations  (2)

FromFiniteField converts finite field elements to polynomials in the field generator:

FromFiniteFieldIndex gives finite field elements with specified indices:

ToFiniteField converts integers to elements of the prime subfield:

Wolfram Research (2024), ToFiniteField, Wolfram Language function, https://reference.wolfram.com/language/ref/ToFiniteField.html.

Text

Wolfram Research (2024), ToFiniteField, Wolfram Language function, https://reference.wolfram.com/language/ref/ToFiniteField.html.

CMS

Wolfram Language. 2024. "ToFiniteField." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ToFiniteField.html.

APA

Wolfram Language. (2024). ToFiniteField. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ToFiniteField.html

BibTeX

@misc{reference.wolfram_2024_tofinitefield, author="Wolfram Research", title="{ToFiniteField}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/ToFiniteField.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_tofinitefield, organization={Wolfram Research}, title={ToFiniteField}, year={2024}, url={https://reference.wolfram.com/language/ref/ToFiniteField.html}, note=[Accessed: 21-January-2025 ]}