WOLFRAM

is an option for FactorInteger, PrimeQ, Factor, and related functions that specifies whether factorization should be done over Gaussian integers.

Details

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Factor a polynomial over :

Out[1]=1

Factor an integer over :

Out[2]=2

Scope  (3)Survey of the scope of standard use cases

By default polynomial factorization is performed over the rationals:

Out[1]=1

This specifies that the factorization should be done over :

Out[2]=2

By default integer factorization is performed over the integers:

Out[1]=1

This specifies that the factorization should be done over the Gaussian integers:

Out[2]=2

A number prime over the integers may not be prime over the Gaussian integers:

Out[1]=1
Out[2]=2

Properties & Relations  (1)Properties of the function, and connections to other functions

For Factor, GaussianIntegers->True is equivalent to Extension->I:

Out[1]=1
Out[2]=2
Wolfram Research (1991), GaussianIntegers, Wolfram Language function, https://reference.wolfram.com/language/ref/GaussianIntegers.html.
Wolfram Research (1991), GaussianIntegers, Wolfram Language function, https://reference.wolfram.com/language/ref/GaussianIntegers.html.

Text

Wolfram Research (1991), GaussianIntegers, Wolfram Language function, https://reference.wolfram.com/language/ref/GaussianIntegers.html.

Wolfram Research (1991), GaussianIntegers, Wolfram Language function, https://reference.wolfram.com/language/ref/GaussianIntegers.html.

CMS

Wolfram Language. 1991. "GaussianIntegers." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GaussianIntegers.html.

Wolfram Language. 1991. "GaussianIntegers." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GaussianIntegers.html.

APA

Wolfram Language. (1991). GaussianIntegers. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaussianIntegers.html

Wolfram Language. (1991). GaussianIntegers. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaussianIntegers.html

BibTeX

@misc{reference.wolfram_2025_gaussianintegers, author="Wolfram Research", title="{GaussianIntegers}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/GaussianIntegers.html}", note=[Accessed: 06-April-2025 ]}

@misc{reference.wolfram_2025_gaussianintegers, author="Wolfram Research", title="{GaussianIntegers}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/GaussianIntegers.html}", note=[Accessed: 06-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_gaussianintegers, organization={Wolfram Research}, title={GaussianIntegers}, year={1991}, url={https://reference.wolfram.com/language/ref/GaussianIntegers.html}, note=[Accessed: 06-April-2025 ]}

@online{reference.wolfram_2025_gaussianintegers, organization={Wolfram Research}, title={GaussianIntegers}, year={1991}, url={https://reference.wolfram.com/language/ref/GaussianIntegers.html}, note=[Accessed: 06-April-2025 ]}