PolyGamma

PolyGamma[z]

gives the digamma function TemplateBox[{z}, PolyGamma].

PolyGamma[n,z]

gives the n^(th) derivative of the digamma function TemplateBox[{n, z}, PolyGamma2].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • PolyGamma[z] is the logarithmic derivative of the gamma function, given by TemplateBox[{z}, PolyGamma]=Gamma^'(z)/TemplateBox[{z}, Gamma].
  • PolyGamma[n,z] is given for positive integer by TemplateBox[{n, z}, PolyGamma2]=d^nTemplateBox[{z}, PolyGamma]/dz^n.
  • For arbitrary complex n, the polygamma function is defined by fractional calculus analytic continuation.
  • PolyGamma[z] and PolyGamma[n,z] are meromorphic functions of z with no branch cut discontinuities.
  • For certain special arguments, PolyGamma automatically evaluates to exact values.
  • PolyGamma can be evaluated to arbitrary numerical precision.
  • PolyGamma automatically threads over lists.
  • PolyGamma can be used with Interval and CenteredInterval objects. »

Examples

open allclose all

Basic Examples  (7)

Evaluate the digamma function:

Evaluate the pentagamma function:

Evaluate the second derivative of the gamma function:

Plot the digamma function over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Series expansion at a singular point:

Scope  (47)

Numerical Evaluation  (7)

Evaluate numerically:

Evaluate for integer arguments of any size:

Evaluate for complex arguments and orders:

Evaluate to any precision:

The precision of the output tracks the precision of the input:

Evaluate PolyGamma efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix PolyGamma function using MatrixFunction:

Specific Values  (6)

Some singular points of PolyGamma:

Values at infinity:

Find a zero of TemplateBox[{x}, PolyGamma]:

Use FunctionExpand to expand higher-order polygamma functions:

Special case:

Evaluate at exact arguments:

Visualization  (3)

Plot the digamma function:

Plot the real part of TemplateBox[{z}, PolyGamma]:

Plot the imaginary part of TemplateBox[{z}, PolyGamma]:

Plot PolyGamma for half-integer values of parameter :

Function Properties  (9)

Real domain of PolyGamma:

Approximate function ranges of PolyGamma for half-integer parameters:

PolyGamma is not an analytic function:

It has both singularities and discontinuities:

TemplateBox[{z}, PolyGamma] is a meromorphic function:

For fixed non-negative integer , TemplateBox[{n, z}, PolyGamma2] is a meromorphic function of :

It is not meromorphic for other values of :

TemplateBox[{x}, PolyGamma] is neither nondecreasing nor nonincreasing:

TemplateBox[{x}, PolyGamma] is not injective:

TemplateBox[{x}, PolyGamma] is surjective:

TemplateBox[{x}, PolyGamma] is neither non-negative nor non-positive:

TemplateBox[{x}, PolyGamma] is neither convex nor concave:

Differentiation  (3)

First derivative of PolyGamma:

Higher derivatives of the digamma function:

Formula for the ^(th) derivative:

Integration  (3)

Indefinite integral of PolyGamma:

Indefinite integral involving a power function:

Definite integral int_1^3TemplateBox[{x}, PolyGamma]dx:

Series Expansions  (7)

Taylor expansion for the digamma function around :

Plot the first three approximations for the Euler gamma function around :

General term in the series expansion of the digamma function:

Series expansion at infinities:

Series expansion at poles:

Series expansion at a generic point:

Series expansion near a singularity:

PolyGamma can be applied to a power series:

Function Identities and Simplifications  (5)

Use FullSimplify to simplify polygamma functions:

PolyGamma identity TemplateBox[{0, z}, PolyGamma2]=TemplateBox[{z}, PolyGamma]:

PolyGamma of a double argument:

Other argument simplifications:

Recurrence relation:

Function Representations  (4)

Digamma function definition:

Integral representation:

PolyGamma can be represented as a DifferenceRoot:

TraditionalForm formatting:

Applications  (4)

Plot of the absolute value of PolyGamma over the complex plane:

The electric field energy of a charge at a fraction of the distance between parallel conducting plates:

Expand near the left wall:

Final speed of a rocket with discrete propulsion events:

Final velocity in the limit of constant continuous propulsion:

Effective confining potential in random matrix theory for a Gaussian density of states:

Expansion at infinity reveals logarithmic growth:

Properties & Relations  (7)

Use FullSimplify to simplify polygamma functions:

Express rational arguments through elementary functions:

Numerically find a root of a transcendental equation:

Sums and integrals:

Generate PolyGamma from integrals, sums, and limits:

Generating function:

Obtain as special cases of hypergeometric functions:

Possible Issues  (3)

The oneargument form evaluates to the two-argument form:

Large orders can give results too large to be computed explicitly:

Machinenumber inputs can give highprecision results:

Wolfram Research (1988), PolyGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/PolyGamma.html (updated 2022).

Text

Wolfram Research (1988), PolyGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/PolyGamma.html (updated 2022).

CMS

Wolfram Language. 1988. "PolyGamma." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/PolyGamma.html.

APA

Wolfram Language. (1988). PolyGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolyGamma.html

BibTeX

@misc{reference.wolfram_2024_polygamma, author="Wolfram Research", title="{PolyGamma}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/PolyGamma.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_polygamma, organization={Wolfram Research}, title={PolyGamma}, year={2022}, url={https://reference.wolfram.com/language/ref/PolyGamma.html}, note=[Accessed: 21-November-2024 ]}