RussellRaoDissimilarity

RussellRaoDissimilarity[u,v]

gives the RussellRao dissimilarity between Boolean vectors u and v.

Details

Examples

open allclose all

Basic Examples  (2)

RussellRao dissimilarity between two Boolean vectors:

The elements can also be True and False:

Scope  (2)

Compute dissimilarity between any 0, 1 vectors of equal length:

Compute dissimilarity between any True, False vectors of equal length:

Properties & Relations  (4)

RussellRao dissimilarity is bounded by 0 and 1:

RussellRaoDissimilarity is greater than or equal to JaccardDissimilarity:

RussellRaoDissimilarity is greater than or equal to MatchingDissimilarity:

RussellRaoDissimilarity is greater than or equal to DiceDissimilarity:

Wolfram Research (2007), RussellRaoDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

Text

Wolfram Research (2007), RussellRaoDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

CMS

Wolfram Language. 2007. "RussellRaoDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

APA

Wolfram Language. (2007). RussellRaoDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html

BibTeX

@misc{reference.wolfram_2024_russellraodissimilarity, author="Wolfram Research", title="{RussellRaoDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}", note=[Accessed: 02-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_russellraodissimilarity, organization={Wolfram Research}, title={RussellRaoDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}, note=[Accessed: 02-January-2025 ]}