gives the Sokal–Sneath dissimilarity between Boolean vectors u and v.


SokalSneathDissimilarity
gives the Sokal–Sneath dissimilarity between Boolean vectors u and v.
Details

- SokalSneathDissimilarity works for both True, False vectors and 0, 1 vectors.
- SokalSneathDissimilarity[u,v] is equivalent to
, where
is the number of corresponding pairs of elements in
and
respectively equal to
and
.
Examples
open all close allBasic Examples (2)
Scope (2)
Applications (2)
Properties & Relations (5)
Sokal–Sneath dissimilarity is bounded by 0 and 1:
SokalSneathDissimilarity is greater than or equal to JaccardDissimilarity:
SokalSneathDissimilarity is greater than or equal to DiceDissimilarity:
SokalSneathDissimilarity is greater than or equal to MatchingDissimilarity:
SokalSneathDissimilarity is greater than or equal to RogersTanimotoDissimilarity:
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), SokalSneathDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html.
CMS
Wolfram Language. 2007. "SokalSneathDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html.
APA
Wolfram Language. (2007). SokalSneathDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html
BibTeX
@misc{reference.wolfram_2025_sokalsneathdissimilarity, author="Wolfram Research", title="{SokalSneathDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html}", note=[Accessed: 08-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_sokalsneathdissimilarity, organization={Wolfram Research}, title={SokalSneathDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html}, note=[Accessed: 08-August-2025]}