WOLFRAM SYSTEM MODELER

DC_PermanentMagnet

Permanent magnet DC machine

Diagram

Wolfram Language

In[1]:=
SystemModel["Modelica.Electrical.Machines.BasicMachines.DCMachines.DC_PermanentMagnet"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Model of a DC Machine with permanent magnets.
Armature resistance and inductance are modeled directly after the armature pins, then using a AirGapDC model. Permanent magnet excitation is modelled by a constant equivalent excitation current feeding AirGapDC. The machine models take the following loss effects into account:

  • heat losses in the temperature dependent armature winding resistance
  • brush losses in the armature circuit
  • friction losses
  • core losses (only eddy current losses, no hysteresis losses)
  • stray load losses

No saturation is modelled.
Default values for machine's parameters (a realistic example) are:

stator's moment of inertia 0.29kg.m2
rotor's moment of inertia 0.15kg.m2
nominal armature voltage 100V
nominal armature current 100A
nominal speed 1425rpm
nominal torque 63.66Nm
nominal mechanical output 9.5kW
efficiency 95.0%
armature resistance 0.05Ohm at reference temperature
reference temperature TaRef 20°C
temperature coefficient alpha20a 01/K
armature inductance 0.0015H
armature nominal temperature TaNominal 20°C
armature operational temperature TaOperational 20°C
Armature resistance resp. inductance include resistance resp. inductance of commutating pole winding and compensation winding, if present.

Parameters (18)

Jr

Value:

Type: Inertia (kg⋅m²)

Description: Rotor's moment of inertia

useSupport

Value: false

Type: Boolean

Description: Enable / disable (=fixed stator) support

Js

Value: Jr

Type: Inertia (kg⋅m²)

Description: Stator's moment of inertia

useThermalPort

Value: false

Type: Boolean

Description: Enable / disable (=fixed temperatures) thermal port

frictionParameters

Value:

Type: FrictionParameters

Description: Friction loss parameter record

TaOperational

Value:

Type: Temperature (K)

Description: Operational armature temperature

VaNominal

Value:

Type: Voltage (V)

Description: Nominal armature voltage

IaNominal

Value:

Type: Current (A)

Description: Nominal armature current (>0..Motor, <0..Generator)

wNominal

Value:

Type: AngularVelocity (rad/s)

Description: Nominal speed

TaNominal

Value:

Type: Temperature (K)

Description: Nominal armature temperature

Ra

Value:

Type: Resistance (Ω)

Description: Armature resistance at TaRef

TaRef

Value:

Type: Temperature (K)

Description: Reference temperature of armature resistance

alpha20a

Value:

Type: LinearTemperatureCoefficient20 (1/K)

Description: Temperature coefficient of armature resistance

La

Value:

Type: Inductance (H)

Description: Armature inductance

coreParameters

Value:

Type: CoreParameters

Description: Armature core loss parameter record

strayLoadParameters

Value:

Type: StrayLoadParameters

Description: Stray load loss parameter record

brushParameters

Value:

Type: BrushParameters

Description: Brush loss parameter record

TpmOperational

Value: 293.15

Type: Temperature (K)

Description: Operational temperature of permanent magnet

Outputs (7)

phiMechanical

Default Value: flange.phi - internalSupport.phi

Type: Angle (rad)

Description: Mechanical angle of rotor against stator

wMechanical

Default Value: der(phiMechanical)

Type: AngularVelocity (rad/s)

Description: Mechanical angular velocity of rotor against stator

tauElectrical

Default Value: inertiaRotor.flange_a.tau

Type: Torque (N⋅m)

Description: Electromagnetic torque

tauShaft

Default Value: -flange.tau

Type: Torque (N⋅m)

Description: Shaft torque

powerBalance

Type: PowerBalanceDCPM

Description: Power balance

va

Default Value: pin_ap.v - pin_an.v

Type: Voltage (V)

Description: Armature voltage

ia

Default Value: pin_ap.i

Type: Current (A)

Description: Armature current

Connectors (7)

flange

Type: Flange_a

Description: Shaft

support

Type: Flange_a

Description: Support at which the reaction torque is acting

internalSupport

Type: Support

Description: Support/housing flange of a one-dimensional rotational shaft

pin_ap

Type: PositivePin

Description: Positive armature pin

pin_an

Type: NegativePin

Description: Negative armature pin

thermalPort

Type: ThermalPortDCPM

Description: Thermal port of DC machine with permanent magnets

internalThermalPort

Type: ThermalPortDCPM

Description: Thermal port of DC machine with permanent magnets

Components (18)

frictionParameters

Type: FrictionParameters

Description: Friction loss parameter record

inertiaRotor

Type: Inertia

Description: 1D-rotational component with inertia

inertiaStator

Type: Inertia

Description: 1D-rotational component with inertia

fixed

Type: Fixed

Description: Flange fixed in housing at a given angle

friction

Type: Friction

Description: Model of angular velocity dependent friction losses

coreParameters

Type: CoreParameters

Description: Armature core loss parameter record

strayLoadParameters

Type: StrayLoadParameters

Description: Stray load loss parameter record

brushParameters

Type: BrushParameters

Description: Brush loss parameter record

powerBalance

Type: PowerBalanceDCPM

Description: Power balance

ra

Type: Resistor

Description: Ideal linear electrical resistor

la

Type: InductorDC

Description: Ideal linear electrical inductor for electrical DC machines

brush

Type: Brush

Description: Model considering voltage drop of carbon brushes

core

Type: Core

Description: Model of core losses

strayLoad

Type: StrayLoad

Description: Model of stray load losses dependent on current and speed

thermalAmbient

Type: ThermalAmbientDCPM

Description: Thermal ambient for DC machine with permanent magnets

airGapDC

Type: AirGapDC

Description: Linear airgap model of a DC machine

eGround

Type: Ground

Description: Ground node

ie

Type: ConstantCurrent

Description: Source for constant current

Used in Examples (8)

DCPM_Start

Modelica.Electrical.Machines.Examples.DCMachines

Test example: DC with permanent magnet starting with voltage ramp

DCPM_CurrentControlled

Modelica.Electrical.Machines.Examples.DCMachines

Test example: DC with permanent magnet starting with current controller

DCPM_Temperature

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Investigate temperature dependency of a DCPM motor

DCPM_Cooling

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Cooling of a DCPM motor

DCPM_QuasiStatic

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Compare DCPM motors transient - quasi-static

DCPM_withLosses

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Investigate influence of losses on DCPM motor performance

ThyristorBridge2mPulse_DC_Drive

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse thyristor bridge feeding a DC drive

HBridge_DC_Drive

Modelica.Electrical.PowerConverters.Examples.DCDC.HBridge

H bridge DC/DC converter with DC drive

Used in Components (1)

PartialControlledDCPM

Modelica.Electrical.Machines.Examples.ControlledDCDrives.Utilities

Partial controlled DC PM drive with H-bridge from battery

Extended by (1)

DC_PermanentMagnet

Modelica.Electrical.Machines.BasicMachines.QuasiStaticDCMachines

Quasi-static permanent magnet DC machine