WOLFRAM SYSTEM MODELER

CylindricalBeamElement

Class containing beam elements based on Euler–Bernoulli beam theory

Wolfram Language

In[1]:=
SystemModel["RotatingMachinery.Shafts.SingleFiniteElements.CylindricalBeamElement"]
Out[1]:=

Information

This model is an extended version of an Euler–Bernoulli Beam element. In addition to the Euler–Bernoulli Beam element, axial and twisting deformation is also taken into account. Background theory can be found in [1].

The axial direction of the beam is by default in the z direction, i.e. [3]-direction. See the following figure.

Figure 1: Cylindrical beam element.

 

The forces to deformation relation can be written as:

where the mass matrix M can be written as:

  

the damping matrix C can be written as:

the stiffness matrix K can be written as:

The load vector F, which describes loads and moments in the two directions that are not the axial for the beam (i.e. x and y axes), can be written as:

The deformation vector q can be written as:

where f is forces, t is the bending moment, r is displacement, and θ is the rotation angle. The index a refers to frame_a, and b refers to frame_b. The x, y and z directions correspond to the Modelica notation [1], [2] and [3], respectively. For instance, fax is the force in direction [1] on flange a and tby is the bending moment around axis [2] on flange b.

The velocities and accelerations become:

In addition to the Euler–Bernoulli Beam element, axial and twisting deformation is also taken into account. The axial deformation becomes:

Parameters:

  • length = Length of beam
  • diameter= Diameter of beam 
  • innerDiameter= Inner diameter of beam 
  • height =Height of beam (y axis)
  • density = Density of beam material
  • Emod = Young’s modulus
  • G = Element material modulus of rigidity (Shear modulus)
  • alpha = Rayleigh constant, i.e. material damping proportional to the stiffness matrix
  • enforceStates_a = true, if absolute variables of frame_a shall be used as states (StateSelect.always)
  • enforceStates_b = true, if absolute variables of frame_b shall be used as states (StateSelect.always)
  • resolveInFrame = RotatingMachinery.Components.Shafts.Components.Types.ResolveInFrame.frame_a, if variables of the beam shall be resolved in frame_a

A vibration due to material damping is frequency dependent; i.e. alpha needs to be adjusted depending which mode is studied.

As a rule of thumb, enforceStates_a is false for all elements and enforceStates_b is true for all elements until it is rooted, i.e. normally the last element. Several examples describe this; see RotatingMachinery.Examples.Shafts

Normally, the default value for resolveInFrame is sufficient. If the model is built from "left to right", i.e. from frame_a to frame_b, this value should be the default. If a beam is connected only in frame_b, this value might have to be changed to frame_b instead.

References

[1] Wikipedia. "Euler-Bernoulli Beam." https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory.

[2] Adams, M. L . Rotating Machinery Vibration: From Analysis to Troubleshooting (2nd ed.). CRC Press, 2010.

Parameters (22)

length

Value:

Type: Length (m)

Description: Beam length

density

Value: 7850

Type: Density (kg/m³)

Description: Density of beam material

Emod

Value: 210000000000.0

Type: ModulusOfElasticity (Pa)

Description: Young's Modulus

G

Value: 80000000000.0

Type: ShearModulus (Pa)

Description: Element material modulus of rigidity (Shear modulus)

alpha

Value: 1 / 1000

Type: Real

Description: Rayleigh constant

enforceStates_a

Value: false

Type: Boolean

Description: = true, if absolute variables of frame_a shall be used as states (StateSelect.always)

enforceStates_b

Value: false

Type: Boolean

Description: = true, if absolute variables of frame_b shall be used as states (StateSelect.always)

A

Value: Modelica.Constants.pi * ((diameter / 2) ^ 2 - (innerDiameter / 2) ^ 2)

Type: Area (m²)

Description: Beam cross sectional area

m

Value: A * density * length

Type: Mass (kg)

Description: Mass of element

Ixx

Value: Modelica.Constants.pi * (diameter ^ 4 - innerDiameter ^ 4) / 64

Type: SecondMomentOfArea (m⁴)

Description: Area moment of inertia

Iyy

Value: Modelica.Constants.pi * (diameter ^ 4 - innerDiameter ^ 4) / 64

Type: SecondMomentOfArea (m⁴)

Description: Area moment of inertia

Jp

Value:

Type: SecondPolarMomentOfArea (m⁴)

Description: Polar moment of inertia

Ip

Value: 0.5 * m * ((diameter / 2) ^ 2 - (innerDiameter / 2) ^ 2)

Type: MomentOfInertia (kg⋅m²)

Description: Mass polar moment of inertia

diameter

Value: 0.02

Type: Diameter (m)

Description: Outer radius of beam

innerDiameter

Value: 0

Type: Diameter (m)

Description: Inner radius of beam

I0

Value: Modelica.Constants.pi * (diameter ^ 4 - innerDiameter ^ 4) / 64

Type: SecondMomentOfArea (m⁴)

Description: Area moment of inertia

K

Value: Emod / length ^ 3 * {{12 * Iyy, 6 * length * Iyy, 0, 0, -12 * Iyy, 6 * length * Iyy, 0, 0}, {6 * length * Iyy, 4 * length ^ 2 * Iyy, 0, 0, -6 * length * Iyy, 2 * length ^ 2 * Iyy, 0, 0}, {0, 0, 12 * Ixx, -6 * length * Ixx, 0, 0, -12 * Ixx, -6 * length * Ixx}, {0, 0, -6 * length * Ixx, 4 * length ^ 2 * Ixx, 0, 0, 6 * length * Ixx, 2 * length ^ 2 * Ixx}, {-12 * Iyy, -6 * length * Iyy, 0, 0, 12 * Iyy, -6 * length * Iyy, 0, 0}, {6 * length * Iyy, 2 * length ^ 2 * Iyy, 0, 0, -6 * length * Iyy, 4 * length ^ 2 * Iyy, 0, 0}, {0, 0, -12 * Ixx, 6 * length * Ixx, 0, 0, 12 * Ixx, 6 * length * Ixx}, {0, 0, -6 * length * Ixx, 2 * length ^ 2 * Ixx, 0, 0, 6 * length * Ixx, 4 * length ^ 2 * Ixx}}

Type: Real[8,8]

Description: Page 87, Concepts and applications of finite element analysis, Robert Cook

Kz

Value: Emod * A / length * {{1, -1}, {-1, 1}}

Type: Real[2,2]

Description: Page 88-89, Concepts and applications of finite element analysis, Robert Cook

Kthetaz

Value: G * Jp / length * {{1, -1}, {-1, 1}}

Type: Real[2,2]

Description: Page 89 in Rotating Machinery Vibration, Maurice length. Adams, JR.S

M

Value: m / 420 * {{156, 22 * length, 0, 0, 54, -13 * length, 0, 0}, {22 * length, 4 * length ^ 2, 0, 0, 13 * length, -3 * length ^ 2, 0, 0}, {0, 0, 156, 22 * length, 0, 0, 54, -13 * length}, {0, 0, 22 * length, 4 * length ^ 2, 0, 0, 13 * length, -3 * length ^ 2}, {54, 13 * length, 0, 0, 156, -22 * length, 0, 0}, {-13 * length, -3 * length ^ 2, 0, 0, -22 * length, 4 * length ^ 2, 0, 0}, {0, 0, 54, 13 * length, 0, 0, 156, -22 * length}, {0, 0, -13 * length, -3 * length ^ 2, 0, 0, -22 * length, 4 * length ^ 2}}

Type: Real[8,8]

Description: Page 304, Concepts and applications of finite element analysis, Robert Cook

Mz

Value: {{m / 2, 0}, {0, m / 2}}

Type: Real[2,2]

Description: Page 304, Concepts and applications of finite element analysis, Robert Cook

Mthetaz

Value: {{Ip / 3, Ip / 6}, {Ip / 6, Ip / 3}}

Type: Real[2,2]

Description: Page 88-89 in Rotating Machinery Vibration, Maurice length. Adams, JR.S

Connectors (3)

frame_a

Type: Frame_a

Description: Coordinate system fixed to the component with one cut-force and cut-torque

frame_b

Type: Frame_b

Description: Coordinate system fixed to the component with one cut-force and cut-torque

frame_resolve

Type: Frame_resolve

Description: Coordinate system fixed to the component used to express in which coordinate system a vector is resolved (non-filled rectangular icon)

Components (3)

world

Type: World

Description: World coordinate system + gravity field + default animation definition

R_a

Type: Orientation

Description: Orientation object defining rotation from a frame 1 into a frame 2

R_b

Type: Orientation

Description: Orientation object defining rotation from a frame 1 into a frame 2

Used in Components (1)

CylindricalBeamSegment

RotatingMachinery.Shafts.SingleFiniteElements

Class with a flexible cylindrical beam