NArgMin

NArgMin[f,x]
gives a position at which f is numerically minimized.

NArgMin[f,{x,y,}]
gives a position at which f is numerically minimized.

NArgMin[{f,cons},{x,y,}]
gives a position at which f is numerically minimized subject to the constraints cons.

NArgMin[,xreg]
constrains x to be in the region reg.

Details and OptionsDetails and Options

  • NArgMin returns a list of the form .
  • NArgMin[,{x,y,}] is effectively equivalent to {x,y,}/.Last[NMinimize[,{x,y,},].
  • cons can contain equations, inequalities, or logical combinations of these.
  • The constraints cons can be any logical combination of:
  • lhs==rhsequations
    or inequalities
    {x,y,}regregion specification
  • NArgMin[{f,cons},xreg] is effectively equivalent to NArgMin[{f,consxreg},x].
  • For , the different coordinates can be referred to using Indexed[x,i].
  • NArgMin always attempts to find a global minimum of f subject to the constraints given.
  • By default, all variables are assumed to be real.
  • xIntegers can be used to specify that a variable can take on only integer values.
  • If f and cons are linear, NArgMin can always find global minima, over both real and integer values.
  • Otherwise, NArgMin may sometimes find only a local minimum.
  • If NArgMin determines that the constraints cannot be satisfied, it returns {Indeterminate,}.
  • NArgMin takes the same options as NMinimize.

ExamplesExamplesopen allclose all

Basic Examples  (4)Basic Examples  (4)

Find a minimizer point for a univariate function:

In[1]:=
Click for copyable input
Out[1]=

Find a minimizer point for a multivariate function:

In[1]:=
Click for copyable input
Out[1]=

Find a minimizer point for a function subject to constraints:

In[1]:=
Click for copyable input
Out[1]=

Find a minimizer point over a geometric region:

In[1]:=
Click for copyable input
Out[1]=

Plot it:

In[2]:=
Click for copyable input
Out[2]=
Introduced in 2008
(7.0)
| Updated in 2014
(10.0)