BooleanMaxterms
BooleanMaxterms[k,n]
represents the k maxterm in n variables.
BooleanMaxterms[{k1,k2,…},n]
represents the conjunction of the maxterms ki.
BooleanMaxterms[{{u1,…,un},{v1,…},…}]
represents the conjunction of maxterms given by the exponent vectors ui, vi, ….
BooleanMaxterms[spec,{a1,a2,…}]
gives the Boolean expression in variables ai corresponding to the maxterms function specified by spec.
BooleanMaxterms[spec,{a,a2,…},form]
gives the Boolean expression in the form specified by form.
Details
- BooleanMaxterms[{{u1,u2,…}},{a1,a2,…}] gives b1∨b2∨… where bi==ai if ui is True and bi=¬ai if ui is False.
- The ui etc. can be either True and False or 1 and 0.
- BooleanMaxterms[k,n] is equivalent to BooleanMaxterms[{IntegerDigits[k,n,2]}].
- BooleanMaxterms[spec] gives a Boolean function object that works like Function.
- BooleanMaxterms[spec][a1,a2,…] gives an implicit representation equivalent to the explicit Boolean expression BooleanMaxterms[spec,{a1,a2,…}].
- BooleanConvert converts BooleanMaxterms[spec][vars] to an explicit Boolean expression.
- In BooleanMaxterms[spec,{a1,a2,…},form], the possible forms are as given for BooleanConvert.
- BooleanMaxterms[spec,{a1,a2,…}] by default gives an expression in CNF.
Examples
open allclose allBasic Examples (4)
Equivalent ways of specifying the same maxterm:
Specify a conjunction of maxterms:
An equivalent way to specify a conjunction of maxterms:
Return a BooleanFunction object representing the conjunction of maxterms:
Properties & Relations (4)
The indices correspond to positions of False, in the default ordering for BooleanTable:
BooleanMaxterms can represent any BooleanFunction:
The mapping from maxterms to index:
The mapping from index to maxterms:
Use Subsets to enumerate all possible Boolean functions using BooleanMaxterms:
BooleanMinterms is related to BooleanMaxterms:
Text
Wolfram Research (2008), BooleanMaxterms, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanMaxterms.html.
CMS
Wolfram Language. 2008. "BooleanMaxterms." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BooleanMaxterms.html.
APA
Wolfram Language. (2008). BooleanMaxterms. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BooleanMaxterms.html