BooleanMinterms

BooleanMinterms[k,n]

represents the k^(th) minterm in n variables.

BooleanMinterms[{k1,k2,},n]

represents the disjunction of the minterms ki.

BooleanMinterms[{{u1,,un},{v1,},}]

represents the disjunction of minterms given by the exponent vectors ui, vi, .

BooleanMinterms[spec,{a1,a2,}]

gives the Boolean expression in variables ai corresponding to the minterms function specified by spec.

BooleanMinterms[spec,{a,a2,},form]

gives the Boolean expression in the form specified by form.

Details

Examples

open allclose all

Basic Examples  (4)

Equivalent ways of specifying the same minterm:

Specify a disjunction of minterms:

An equivalent way to specify a disjunction of minterms:

Return a BooleanFunction object representing the disjunction of minterms:

Enumerate all minterms of three variables:

Scope  (1)

Specify different forms for the result:

Properties & Relations  (4)

The indices correspond to positions of True in the default ordering for BooleanTable:

BooleanMinterms can represent any BooleanFunction:

The mapping from minterms to index:

The mapping from index to minterms:

Using bit vectors:

Use Subsets to enumerate all possible Boolean functions using BooleanMinterms:

BooleanMaxterms is related to BooleanMinterms:

Wolfram Research (2008), BooleanMinterms, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanMinterms.html.

Text

Wolfram Research (2008), BooleanMinterms, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanMinterms.html.

BibTeX

@misc{reference.wolfram_2021_booleanminterms, author="Wolfram Research", title="{BooleanMinterms}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/BooleanMinterms.html}", note=[Accessed: 24-October-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_booleanminterms, organization={Wolfram Research}, title={BooleanMinterms}, year={2008}, url={https://reference.wolfram.com/language/ref/BooleanMinterms.html}, note=[Accessed: 24-October-2021 ]}

CMS

Wolfram Language. 2008. "BooleanMinterms." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BooleanMinterms.html.

APA

Wolfram Language. (2008). BooleanMinterms. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BooleanMinterms.html