DiscreteMinLimit
✖
DiscreteMinLimit
gives the min limit k∞f(k) of the sequence f as k tends to ∞ over the integers.


gives the multivariate min limit f(k1,…,kn) over the integers.
Details and Options



- DiscreteMinLimit is also known as limit inferior, infimum limit, liminf, lower limit and inner limit.
- DiscreteMinLimit computes the largest lower bound for the limit and is always defined for real-valued sequences. It is often used to give conditions of convergence and other asymptotic properties that do not rely on an actual limit to exist.
- DiscreteMinLimit[f,k∞] can be entered as
f. A template
can be entered as
dmlim
, and
moves the cursor from the underscript to the body.
- DiscreteMinLimit[f,{k1,…,kn}{
,…,
}] can be entered as
…
f.
- The possible limit points
are ±∞.
- The min limit is defined as a limit of the min envelope sequence min[ω]:
-
DiscreteMinLimit[f,k∞] DiscreteLimit[min[ω],ω∞] DiscreteMinLimit[f,{k1,…,kn}{∞,…,∞}] DiscreteLimit[min[ω],ω∞] - DiscreteMinLimit[f[k],k-∞] is equivalent to DiscreteMinLimit[f[-l],l∞] etc.
- The definition uses the min envelope min[ω]MinValue[{f[k],k≥ω∧k∈
},k] for univariate f[k] and min[ω]MinValue[{f[k1,…,kn],k1≥ω∧⋯∧kn≥ω∧ki∈
},{k1,…,kn}] for multivariate f[k1,…,kn]. The sequence min[ω] is monotone increasing as ω∞, so always has a limit, which may be ±∞.
- The illustration shows min[k] and min[Min[k1,k2]] in blue.
- DiscreteMinLimit returns unevaluated when the min limit cannot be found.
- The following options can be given:
-
Assumptions $Assumptions assumptions on parameters GenerateConditions Automatic whether to generate conditions on parameters Method Automatic method to use PerformanceGoal "Quality" aspects of performance to optimize - Possible settings for GenerateConditions include:
-
Automatic non-generic conditions only True all conditions False no conditions None return unevaluated if conditions are needed - Possible settings for PerformanceGoal include $PerformanceGoal, "Quality" and "Speed". With the "Quality" setting, DiscreteMinLimit typically solves more problems or produces simpler results, but it potentially uses more time and memory.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0btnx6zdpl8y-g3op6e


https://wolfram.com/xid/0btnx6zdpl8y-khdo7y


https://wolfram.com/xid/0btnx6zdpl8y-cz9c26

Use dmlim
to enter the template
and
to move from the underscript to the body:

https://wolfram.com/xid/0btnx6zdpl8y-e1mcaw

TraditionalForm typesetting:

https://wolfram.com/xid/0btnx6zdpl8y-e82anr

Scope (22)Survey of the scope of standard use cases
Basic Uses (4)
Compute the min limit of a sequence when n approaches Infinity:

https://wolfram.com/xid/0btnx6zdpl8y-hb5uiw

Compute the min limit of a sequence when n approaches -Infinity:

https://wolfram.com/xid/0btnx6zdpl8y-et7bpy

Compute a nested limit for a multivariate sequence:

https://wolfram.com/xid/0btnx6zdpl8y-pukp4y

Compute the limit of a list of sequences:

https://wolfram.com/xid/0btnx6zdpl8y-g45pgr

Elementary Function Sequences (6)
Find the min limit of a rational-exponential sequence:

https://wolfram.com/xid/0btnx6zdpl8y-lxbke9


https://wolfram.com/xid/0btnx6zdpl8y-c6vm2a

Convergent geometric sequence:

https://wolfram.com/xid/0btnx6zdpl8y-dc9wk


https://wolfram.com/xid/0btnx6zdpl8y-f0lb99

Oscillating geometric sequence:

https://wolfram.com/xid/0btnx6zdpl8y-b9ebzb


https://wolfram.com/xid/0btnx6zdpl8y-bs2twv

Divergent oscillating geometric sequence:

https://wolfram.com/xid/0btnx6zdpl8y-q2dwr


https://wolfram.com/xid/0btnx6zdpl8y-g2hriz


https://wolfram.com/xid/0btnx6zdpl8y-fxkte2


https://wolfram.com/xid/0btnx6zdpl8y-ek16lf


https://wolfram.com/xid/0btnx6zdpl8y-i5h5nm


https://wolfram.com/xid/0btnx6zdpl8y-e5uei


https://wolfram.com/xid/0btnx6zdpl8y-dm6ege


https://wolfram.com/xid/0btnx6zdpl8y-ml1zl


https://wolfram.com/xid/0btnx6zdpl8y-g527az

Inverse trigonometric sequence:

https://wolfram.com/xid/0btnx6zdpl8y-lykjl


https://wolfram.com/xid/0btnx6zdpl8y-yzua9


https://wolfram.com/xid/0btnx6zdpl8y-8qd0z


https://wolfram.com/xid/0btnx6zdpl8y-i4pw3x

Integer Function Sequences (3)
Sequences involving Factorial:

https://wolfram.com/xid/0btnx6zdpl8y-yem9f


https://wolfram.com/xid/0btnx6zdpl8y-1sstox

Sequence involving FactorialPower:

https://wolfram.com/xid/0btnx6zdpl8y-bof7hm

Compute the limit of a sequence involving Fibonacci:

https://wolfram.com/xid/0btnx6zdpl8y-bcqotc

Periodic Sequences (3)

https://wolfram.com/xid/0btnx6zdpl8y-clh32t


https://wolfram.com/xid/0btnx6zdpl8y-ilo0ri


https://wolfram.com/xid/0btnx6zdpl8y-f0qvyn


https://wolfram.com/xid/0btnx6zdpl8y-egrxv


https://wolfram.com/xid/0btnx6zdpl8y-d03d2h


https://wolfram.com/xid/0btnx6zdpl8y-gnytrw


https://wolfram.com/xid/0btnx6zdpl8y-cpqsv5


https://wolfram.com/xid/0btnx6zdpl8y-k12ere


https://wolfram.com/xid/0btnx6zdpl8y-f6lwfg


https://wolfram.com/xid/0btnx6zdpl8y-d7z025


https://wolfram.com/xid/0btnx6zdpl8y-k07f3o


https://wolfram.com/xid/0btnx6zdpl8y-lmhs11


https://wolfram.com/xid/0btnx6zdpl8y-bzcdcc

Piecewise Function Sequences (2)
Piecewise sequence with a finite min limit:

https://wolfram.com/xid/0btnx6zdpl8y-vznig


https://wolfram.com/xid/0btnx6zdpl8y-kkguvr

Piecewise sequence with an infinite min limit:

https://wolfram.com/xid/0btnx6zdpl8y-xejfm


https://wolfram.com/xid/0btnx6zdpl8y-m4nvru

Piecewise sequence with periodic conditions:

https://wolfram.com/xid/0btnx6zdpl8y-d9ybuq


https://wolfram.com/xid/0btnx6zdpl8y-skkms

Number Theoretic Sequences (2)

https://wolfram.com/xid/0btnx6zdpl8y-b1qh0b


https://wolfram.com/xid/0btnx6zdpl8y-bitj2u

Sequence involving Prime:

https://wolfram.com/xid/0btnx6zdpl8y-fsldo


https://wolfram.com/xid/0btnx6zdpl8y-c9987h

Multivariate Sequences (2)
Options (6)Common values & functionality for each option
Assumptions (1)
GenerateConditions (3)
Return a result without stating conditions:

https://wolfram.com/xid/0btnx6zdpl8y-spbhce

This result is only valid if x>1:

https://wolfram.com/xid/0btnx6zdpl8y-lftbu6

Return unevaluated if the results depend on the value of parameters:

https://wolfram.com/xid/0btnx6zdpl8y-2lepxp

By default, conditions are generated that return a unique result:

https://wolfram.com/xid/0btnx6zdpl8y-14nrvk

By default, conditions are not generated if only special values invalidate the result:

https://wolfram.com/xid/0btnx6zdpl8y-uhm6gw

With GenerateConditions->True, even these non-generic conditions are reported:

https://wolfram.com/xid/0btnx6zdpl8y-291b1m

Method (1)
Compute the min limit of a periodic sequence using the default method:

https://wolfram.com/xid/0btnx6zdpl8y-gna87y

Obtain the same answer using the method for periodic sequences:

https://wolfram.com/xid/0btnx6zdpl8y-jt0cjx

The limit of the sequence is undefined, since it oscillates between 0 and 1:

https://wolfram.com/xid/0btnx6zdpl8y-eqc0mj

PerformanceGoal (1)
DiscreteMinLimit computes limits involving sequences of arbitrarily large periods:

https://wolfram.com/xid/0btnx6zdpl8y-i86kxj

https://wolfram.com/xid/0btnx6zdpl8y-i9gq

Use PerformanceGoal to avoid potentially expensive computations in such cases:

https://wolfram.com/xid/0btnx6zdpl8y-byiylb

The Method option overrides PerformanceGoal:

https://wolfram.com/xid/0btnx6zdpl8y-bh9kxc

Applications (3)Sample problems that can be solved with this function
Compute the asymptotic minimum of a sequence:

https://wolfram.com/xid/0btnx6zdpl8y-evnfw9

Plot the sequence and the asymptotic minimum:

https://wolfram.com/xid/0btnx6zdpl8y-dxedrx

Verify that the following sequence does not have a limit:

https://wolfram.com/xid/0btnx6zdpl8y-cy4wh5

https://wolfram.com/xid/0btnx6zdpl8y-bibaa2

Show that DiscreteMaxLimit and DiscreteMinLimit are not equal:

https://wolfram.com/xid/0btnx6zdpl8y-wrhna


https://wolfram.com/xid/0btnx6zdpl8y-d48yo1

Confirm that the limit does not exist by using DiscreteLimit:

https://wolfram.com/xid/0btnx6zdpl8y-esjhm8

An algorithm runtime function is said to be "big-omega of
", written
, if
:

https://wolfram.com/xid/0btnx6zdpl8y-mlj236
Similarly, is said to be "big-theta of
", written
if
and
:

https://wolfram.com/xid/0btnx6zdpl8y-ofku20

https://wolfram.com/xid/0btnx6zdpl8y-bv5n1w


https://wolfram.com/xid/0btnx6zdpl8y-n96r3n

It is possible for two functions to share neither relationship:

https://wolfram.com/xid/0btnx6zdpl8y-z3kbhh

Hence, defines a reflexive partial order on the space of algorithm runtimes similar to
:

https://wolfram.com/xid/0btnx6zdpl8y-wowly

https://wolfram.com/xid/0btnx6zdpl8y-sh3ntl

If and
, then
, which implies that
is an equivalence relation:

https://wolfram.com/xid/0btnx6zdpl8y-dezmtj

Properties & Relations (11)Properties of the function, and connections to other functions
A real-valued function always has a (possibly infinite) min limit:

https://wolfram.com/xid/0btnx6zdpl8y-dqn5f4

https://wolfram.com/xid/0btnx6zdpl8y-ejovu

The corresponding limit may not exist:

https://wolfram.com/xid/0btnx6zdpl8y-9h2du

If and
have finite min limits, then
:

https://wolfram.com/xid/0btnx6zdpl8y-hapf7s

https://wolfram.com/xid/0btnx6zdpl8y-ki9asl

https://wolfram.com/xid/0btnx6zdpl8y-hoyphw

In this case, there is strict inequality:

https://wolfram.com/xid/0btnx6zdpl8y-4wm4fg

Positive multiplicative constants can be moved outside a limit:

https://wolfram.com/xid/0btnx6zdpl8y-bytgex

https://wolfram.com/xid/0btnx6zdpl8y-fv4gx

https://wolfram.com/xid/0btnx6zdpl8y-crrr33

For a real-valued sequence, if DiscreteLimit exists, DiscreteMinLimit has the same value:

https://wolfram.com/xid/0btnx6zdpl8y-djj1nf

https://wolfram.com/xid/0btnx6zdpl8y-tlom4


https://wolfram.com/xid/0btnx6zdpl8y-bb2v


https://wolfram.com/xid/0btnx6zdpl8y-hfqnkd

https://wolfram.com/xid/0btnx6zdpl8y-jeu5t4

https://wolfram.com/xid/0btnx6zdpl8y-5nd1ru


https://wolfram.com/xid/0btnx6zdpl8y-hi3dhc

DiscreteMinLimit is less than or equal to DiscreteMaxLimit:

https://wolfram.com/xid/0btnx6zdpl8y-cxy11z

https://wolfram.com/xid/0btnx6zdpl8y-iehyz0

If DiscreteMinLimit equals DiscreteMaxLimit, the limit exists and equals their common value:

https://wolfram.com/xid/0btnx6zdpl8y-f6hztd

https://wolfram.com/xid/0btnx6zdpl8y-bvlaz9

If the min limit is , then the max limit and thus the limit are also
:

https://wolfram.com/xid/0btnx6zdpl8y-tw9zq1

https://wolfram.com/xid/0btnx6zdpl8y-1z7ub5

DiscreteMinLimit can be computed as -DiscreteMaxLimit[-f,…]:

https://wolfram.com/xid/0btnx6zdpl8y-5oz4gv

https://wolfram.com/xid/0btnx6zdpl8y-mse78t


https://wolfram.com/xid/0btnx6zdpl8y-zwywc

https://wolfram.com/xid/0btnx6zdpl8y-g2avgr

https://wolfram.com/xid/0btnx6zdpl8y-wbzb2v


https://wolfram.com/xid/0btnx6zdpl8y-k7j3pk

If the two max limits are equal—as in this example—then has a limit:

https://wolfram.com/xid/0btnx6zdpl8y-vnttqn

This is a generalization of the "squeezing" or "sandwich" theorem:

https://wolfram.com/xid/0btnx6zdpl8y-b1meus

MinLimit is always less than or equal to DiscreteMinLimit:

https://wolfram.com/xid/0btnx6zdpl8y-58ji5s

https://wolfram.com/xid/0btnx6zdpl8y-34gpyb


https://wolfram.com/xid/0btnx6zdpl8y-qtl6qs


https://wolfram.com/xid/0btnx6zdpl8y-uu7jv3

Possible Issues (1)Common pitfalls and unexpected behavior
DiscreteMinLimit is only defined for real-valued sequences:

https://wolfram.com/xid/0btnx6zdpl8y-kyusc


Wolfram Research (2017), DiscreteMinLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteMinLimit.html.
Text
Wolfram Research (2017), DiscreteMinLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteMinLimit.html.
Wolfram Research (2017), DiscreteMinLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteMinLimit.html.
CMS
Wolfram Language. 2017. "DiscreteMinLimit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteMinLimit.html.
Wolfram Language. 2017. "DiscreteMinLimit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteMinLimit.html.
APA
Wolfram Language. (2017). DiscreteMinLimit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteMinLimit.html
Wolfram Language. (2017). DiscreteMinLimit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteMinLimit.html
BibTeX
@misc{reference.wolfram_2025_discreteminlimit, author="Wolfram Research", title="{DiscreteMinLimit}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/DiscreteMinLimit.html}", note=[Accessed: 24-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_discreteminlimit, organization={Wolfram Research}, title={DiscreteMinLimit}, year={2017}, url={https://reference.wolfram.com/language/ref/DiscreteMinLimit.html}, note=[Accessed: 24-April-2025
]}