MinValue
✖
MinValue
Details and Options


- MinValue is also known as infimum.
- MinValue finds the global minimum of f subject to the constraints given.
- MinValue is typically used to find the smallest possible values given constraints. In different areas, this may be called the best strategy, best fit, best configuration and so on.
- If f and cons are linear or polynomial, MinValue will always find the global infimum.
- The constraints cons can be any logical combination of:
-
lhs==rhs equations lhs>rhs, lhs≥rhs, lhs<rhs, lhs≤rhs inequalities (LessEqual,…) lhsrhs, lhsrhs, lhsrhs, lhsrhs vector inequalities (VectorLessEqual,…) Exists[…], ForAll[…] quantified conditions {x,y,…}∈rdom region or domain specification - MinValue[{f,cons},x∈rdom] is effectively equivalent to MinValue[{f,cons∧x∈rdom},x].
- For x∈rdom, the different coordinates can be referred to using Indexed[x,i].
- Possible domains rdom include:
-
Reals real scalar variable Integers integer scalar variable Vectors[n,dom] vector variable in Matrices[{m,n},dom] matrix variable in ℛ vector variable restricted to the geometric region - By default, all variables are assumed to be real.
- MinValue will return exact results if given exact input. With approximate input, it automatically calls NMinValue.
- MinValue will return the following forms:
-
fmin finite minimum ∞ infeasible, i.e. the constraint set is empty -∞ unbounded, i.e. the values of f can be arbitrarily small - MinValue gives the infimum of values of f. It may not be attained for any values of x, y, ….
- N[MinValue[…]] calls NMinValue for optimization problems that cannot be solved symbolically.

Examples
open allclose allBasic Examples (5)Summary of the most common use cases
Find the minimum value of a univariate function:

https://wolfram.com/xid/0j4y6y3u-faqf4h

Find the minimum value of a multivariate function:

https://wolfram.com/xid/0j4y6y3u-b6nuhh

Find the minimum value of a function subject to constraints:

https://wolfram.com/xid/0j4y6y3u-fcm1i7

Find the minimum value as a function of parameters:

https://wolfram.com/xid/0j4y6y3u-65b19

Find the minimum value of a function over a geometric region:

https://wolfram.com/xid/0j4y6y3u-ewyjra


https://wolfram.com/xid/0j4y6y3u-dg5h30

Scope (36)Survey of the scope of standard use cases
Basic Uses (7)
Minimize over the unconstrained reals:

https://wolfram.com/xid/0j4y6y3u-86qsf

Minimize subject to constraints
:

https://wolfram.com/xid/0j4y6y3u-edj208

Constraints may involve arbitrary logical combinations:

https://wolfram.com/xid/0j4y6y3u-dtv7r7


https://wolfram.com/xid/0j4y6y3u-pjuvi



https://wolfram.com/xid/0j4y6y3u-jajckq


The infimum value may not be attained:

https://wolfram.com/xid/0j4y6y3u-fbfbh6


https://wolfram.com/xid/0j4y6y3u-cgiu1o

Use a vector variable and a vector inequality:

https://wolfram.com/xid/0j4y6y3u-lu8fwi

Univariate Problems (7)
Unconstrained univariate polynomial minimization:

https://wolfram.com/xid/0j4y6y3u-dhud3y

Constrained univariate polynomial minimization:

https://wolfram.com/xid/0j4y6y3u-bp80ai


https://wolfram.com/xid/0j4y6y3u-or0am7

Analytic functions over bounded constraints:

https://wolfram.com/xid/0j4y6y3u-cm5gkd


https://wolfram.com/xid/0j4y6y3u-b1wc7x


https://wolfram.com/xid/0j4y6y3u-z7foj



https://wolfram.com/xid/0j4y6y3u-jpja8l


https://wolfram.com/xid/0j4y6y3u-ch1ske

Combination of trigonometric functions with commensurable periods:

https://wolfram.com/xid/0j4y6y3u-pbsb7r

Combination of periodic functions with incommensurable periods:

https://wolfram.com/xid/0j4y6y3u-bqws15


https://wolfram.com/xid/0j4y6y3u-3ogx


https://wolfram.com/xid/0j4y6y3u-e9jn5u

Unconstrained problems solvable using function property information:

https://wolfram.com/xid/0j4y6y3u-es0ujg


https://wolfram.com/xid/0j4y6y3u-jxi0j

Multivariate Problems (9)
Multivariate linear constrained minimization:

https://wolfram.com/xid/0j4y6y3u-cemla

Linear-fractional constrained minimization:

https://wolfram.com/xid/0j4y6y3u-lr473t

Unconstrained polynomial minimization:

https://wolfram.com/xid/0j4y6y3u-czwmlc

Constrained polynomial optimization can always be solved:

https://wolfram.com/xid/0j4y6y3u-gzq2vq

The minimum value may not be attained:

https://wolfram.com/xid/0j4y6y3u-byn0ry

The objective function may be unbounded:

https://wolfram.com/xid/0j4y6y3u-i7gioe

There may be no points satisfying the constraints:

https://wolfram.com/xid/0j4y6y3u-edzan1


Quantified polynomial constraints:

https://wolfram.com/xid/0j4y6y3u-bj2pwq


https://wolfram.com/xid/0j4y6y3u-dsj2qz

Bounded transcendental minimization:

https://wolfram.com/xid/0j4y6y3u-pc6y7


https://wolfram.com/xid/0j4y6y3u-cgyyk8


https://wolfram.com/xid/0j4y6y3u-81pld6

Minimize convex objective function such that
is positive semidefinite and
:

https://wolfram.com/xid/0j4y6y3u-ml87f0

Plot the function and the minimum value over the region:

https://wolfram.com/xid/0j4y6y3u-5jo4bk

Parametric Problems (4)
Parametric linear optimization:

https://wolfram.com/xid/0j4y6y3u-ds69uj

The minimum value is a continuous function of parameters:

https://wolfram.com/xid/0j4y6y3u-hbs678

Parametric quadratic optimization:

https://wolfram.com/xid/0j4y6y3u-8l1oto

The minimum value is a continuous function of parameters:

https://wolfram.com/xid/0j4y6y3u-cgw39

Unconstrained parametric polynomial minimization:

https://wolfram.com/xid/0j4y6y3u-hvvtn9

Constrained parametric polynomial minimization:

https://wolfram.com/xid/0j4y6y3u-e7xyfo

Optimization over Integers (3)

https://wolfram.com/xid/0j4y6y3u-ylokw


https://wolfram.com/xid/0j4y6y3u-0kjmh


https://wolfram.com/xid/0j4y6y3u-lzeg4t


https://wolfram.com/xid/0j4y6y3u-b4esd5

Polynomial minimization over the integers:

https://wolfram.com/xid/0j4y6y3u-i09s0l

Optimization over Regions (6)
Find the minimum value of a function over a geometric region:

https://wolfram.com/xid/0j4y6y3u-i9nmj9

https://wolfram.com/xid/0j4y6y3u-f1e6uo


https://wolfram.com/xid/0j4y6y3u-otv084

Find the minimum distance between two regions:

https://wolfram.com/xid/0j4y6y3u-dkte2m

https://wolfram.com/xid/0j4y6y3u-la9l1


https://wolfram.com/xid/0j4y6y3u-bvatmu

Find the minimum such that the triangle and ellipse still intersect:

https://wolfram.com/xid/0j4y6y3u-ho0zb

https://wolfram.com/xid/0j4y6y3u-c5pk5o


https://wolfram.com/xid/0j4y6y3u-dy0urb

Find the minimum radius of a disk that contains the given three points:

https://wolfram.com/xid/0j4y6y3u-fxoyak

https://wolfram.com/xid/0j4y6y3u-6vbtl

Using Circumsphere gives the same result directly:

https://wolfram.com/xid/0j4y6y3u-ccn5a7

Use to specify that
is a vector in
:

https://wolfram.com/xid/0j4y6y3u-e7unye

https://wolfram.com/xid/0j4y6y3u-e73rcw

Find the minimum distance between two regions:

https://wolfram.com/xid/0j4y6y3u-kgd51l

https://wolfram.com/xid/0j4y6y3u-ktpqdn


https://wolfram.com/xid/0j4y6y3u-ifh0j0

Options (1)Common values & functionality for each option
WorkingPrecision (1)
Finding the exact minimum takes a long time:

https://wolfram.com/xid/0j4y6y3u-dt4zl

With WorkingPrecision->100, the result is an exact minimum value, but it might be incorrect:

https://wolfram.com/xid/0j4y6y3u-c5mizn

Applications (9)Sample problems that can be solved with this function
Basic Applications (3)
Find the minimal perimeter among rectangles with a unit area:

https://wolfram.com/xid/0j4y6y3u-wtuty

Find the minimal perimeter among triangles with a unit area:

https://wolfram.com/xid/0j4y6y3u-jayfl1

https://wolfram.com/xid/0j4y6y3u-bx6cxm

Find the distance to a parabola from a point on its axis:

https://wolfram.com/xid/0j4y6y3u-mcgw7a

Assuming a particular relationship between the and
parameters:

https://wolfram.com/xid/0j4y6y3u-h6oc0

Geometric Distances (6)
The distance of a point p to a region ℛ is given by MinValue[EuclideanDistance[p,q],q∈ℛ]. Find the distance of {1,1} to the unit Disk[]:

https://wolfram.com/xid/0j4y6y3u-bbe5gq

https://wolfram.com/xid/0j4y6y3u-ebjkmb


https://wolfram.com/xid/0j4y6y3u-d8p3tv

Find the distance of the point {1,3/4} to the standard unit simplex Simplex[2]:

https://wolfram.com/xid/0j4y6y3u-bi7hqn

https://wolfram.com/xid/0j4y6y3u-bfqxai


https://wolfram.com/xid/0j4y6y3u-hfmqh

Find the distance of the point {1,1,1} to the standard unit sphere Sphere[]:

https://wolfram.com/xid/0j4y6y3u-dj6j8q

https://wolfram.com/xid/0j4y6y3u-g49fxz


https://wolfram.com/xid/0j4y6y3u-jz2mh

Find the distance of the point {-1/3,1/3,1/3} to the standard unit simplex Simplex[3]:

https://wolfram.com/xid/0j4y6y3u-jqaty

https://wolfram.com/xid/0j4y6y3u-dfalqn


https://wolfram.com/xid/0j4y6y3u-e5f7z2

The distance between regions and can be found through MinValue[EuclideanDistance[p,q],{p∈,q∈}]. Find the distance between Disk[{0,0}] and Rectangle[{3,3}]:

https://wolfram.com/xid/0j4y6y3u-ft5pzx

https://wolfram.com/xid/0j4y6y3u-bsjb93

Find the distance between Line[{{0,0,0},{1,1,1}}] and Ball[{5,5,0},1]:

https://wolfram.com/xid/0j4y6y3u-ogx39

https://wolfram.com/xid/0j4y6y3u-fggxwj

Properties & Relations (5)Properties of the function, and connections to other functions
Minimize gives both the value of the minimum and the minimizer point:

https://wolfram.com/xid/0j4y6y3u-c60bbs

MinValue gives an exact global minimum value of the objective function:

https://wolfram.com/xid/0j4y6y3u-c3l3pu

https://wolfram.com/xid/0j4y6y3u-z9fmn


https://wolfram.com/xid/0j4y6y3u-dxhraz

NMinValue attempts to find a global minimum numerically, but may find a local minimum:

https://wolfram.com/xid/0j4y6y3u-kxmpp


https://wolfram.com/xid/0j4y6y3u-ffnzus

FindMinValue finds local minima depending on the starting point:

https://wolfram.com/xid/0j4y6y3u-ddl886


https://wolfram.com/xid/0j4y6y3u-jjukrq

MinValue can solve linear programming problems:

https://wolfram.com/xid/0j4y6y3u-mm3mtp

LinearProgramming can be used to solve the same problem given in matrix notation:

https://wolfram.com/xid/0j4y6y3u-i8n5ly

https://wolfram.com/xid/0j4y6y3u-b7q2kw

Use RegionDistance to compute the minimum distance from a point to a region:

https://wolfram.com/xid/0j4y6y3u-f4g5uc

https://wolfram.com/xid/0j4y6y3u-lbd2cp

Compute the distance using MinValue:

https://wolfram.com/xid/0j4y6y3u-cl3cvc

Use RegionBounds to compute the bounding box:

https://wolfram.com/xid/0j4y6y3u-eqkvxp


https://wolfram.com/xid/0j4y6y3u-jf4d0

Use MaxValue and MinValue to compute the same bounds:

https://wolfram.com/xid/0j4y6y3u-gkt1lb


https://wolfram.com/xid/0j4y6y3u-ckoox0

Possible Issues (1)Common pitfalls and unexpected behavior
MinValue requires that all functions present in the input be real valued:

https://wolfram.com/xid/0j4y6y3u-due48b

Values for which the equation is satisfied but the square roots are not real are disallowed:

https://wolfram.com/xid/0j4y6y3u-mnsihk

Wolfram Research (2008), MinValue, Wolfram Language function, https://reference.wolfram.com/language/ref/MinValue.html (updated 2021).
Text
Wolfram Research (2008), MinValue, Wolfram Language function, https://reference.wolfram.com/language/ref/MinValue.html (updated 2021).
Wolfram Research (2008), MinValue, Wolfram Language function, https://reference.wolfram.com/language/ref/MinValue.html (updated 2021).
CMS
Wolfram Language. 2008. "MinValue." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/MinValue.html.
Wolfram Language. 2008. "MinValue." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/MinValue.html.
APA
Wolfram Language. (2008). MinValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinValue.html
Wolfram Language. (2008). MinValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinValue.html
BibTeX
@misc{reference.wolfram_2025_minvalue, author="Wolfram Research", title="{MinValue}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/MinValue.html}", note=[Accessed: 30-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_minvalue, organization={Wolfram Research}, title={MinValue}, year={2021}, url={https://reference.wolfram.com/language/ref/MinValue.html}, note=[Accessed: 30-April-2025
]}