DispersionEstimatorFunction
✖
DispersionEstimatorFunction
is an option for generalized linear model fitting functions that specifies the estimator for the dispersion parameter.
Details

- DispersionEstimatorFunction is an option for GeneralizedLinearModelFit, LogitModelFit, and ProbitModelFit.
- With DispersionEstimatorFunction->"PearsonChiSquare", the estimator is
where
is the number of data points,
is the number of parameters, and
is the variance function for the distribution.
- With DispersionEstimatorFunction->Automatic, the following estimates are used:
-
"Binomial" 1 "Gamma" "Gaussian" "InverseGaussian" "Poisson" 1 "QuasiLikelihood" - Non‐default values can be used to model overdispersion in "Binomial" and "Poisson" models.
- With the setting DispersionEstimatorFunction->f, the common dispersion is estimated by f[y,
,w] where y={y1,y2,…} is the list of observations,
={
,
,…} is the list of predicted values, and w={w1,w2,…} is the list of weights for the measurements yi.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-brkjy3

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-crq2bc

Compute the covariance matrix using the default dispersion estimate:

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-ks68gb

Estimate the dispersion by Pearson's :

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-jt4pb7

Estimate the dispersion by the mean squared error:

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-dyzon

Scope (2)Survey of the scope of standard use cases
Define the estimate within the FittedModel:

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-evc252

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-cnz99m


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-jj6u3j


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-em28ru


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-c7pfx


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-eykbej


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-kbjbsx

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-gs9gof

Estimate the dispersion by the sum of squared errors:

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-ddagjx


https://wolfram.com/xid/0bmukxikm8pdj0rl3de-gmg7i8

Estimate the dispersion by the mean squared error:

https://wolfram.com/xid/0bmukxikm8pdj0rl3de-inm1og

Wolfram Research (2008), DispersionEstimatorFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
Text
Wolfram Research (2008), DispersionEstimatorFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
Wolfram Research (2008), DispersionEstimatorFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
CMS
Wolfram Language. 2008. "DispersionEstimatorFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
Wolfram Language. 2008. "DispersionEstimatorFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
APA
Wolfram Language. (2008). DispersionEstimatorFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html
Wolfram Language. (2008). DispersionEstimatorFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html
BibTeX
@misc{reference.wolfram_2025_dispersionestimatorfunction, author="Wolfram Research", title="{DispersionEstimatorFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_dispersionestimatorfunction, organization={Wolfram Research}, title={DispersionEstimatorFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html}, note=[Accessed: 04-April-2025
]}