DispersionEstimatorFunction
is an option for generalized linear model fitting functions that specifies the estimator for the dispersion parameter.
Details
- DispersionEstimatorFunction is an option for GeneralizedLinearModelFit, LogitModelFit, and ProbitModelFit.
- With DispersionEstimatorFunction->"PearsonChiSquare", the estimator is where is the number of data points, is the number of parameters, and is the variance function for the distribution.
- With DispersionEstimatorFunction->Automatic, the following estimates are used:
-
"Binomial" 1 "Gamma" "Gaussian" "InverseGaussian" "Poisson" 1 "QuasiLikelihood" - Non‐default values can be used to model overdispersion in "Binomial" and "Poisson" models.
- With the setting DispersionEstimatorFunction->f, the common dispersion is estimated by f[y,,w] where y={y1,y2,…} is the list of observations, ={,,…} is the list of predicted values, and w={w1,w2,…} is the list of weights for the measurements yi.
Examples
open allclose allBasic Examples (1)
Scope (2)
Define the estimate within the FittedModel:
Wolfram Research (2008), DispersionEstimatorFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
Text
Wolfram Research (2008), DispersionEstimatorFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
CMS
Wolfram Language. 2008. "DispersionEstimatorFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html.
APA
Wolfram Language. (2008). DispersionEstimatorFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DispersionEstimatorFunction.html