ElectricPotentialCondition

ElectricPotentialCondition[pred,vars,pars]

represents an electric potential surface boundary condition for PDEs with predicate pred indicating where it applies, with model variables vars and global parameters pars.

ElectricPotentialCondition[pred,vars,pars,lkey]

represents an electric potential surface boundary condition with local parameters specified in pars[lkey].

Details

Examples

open allclose all

Basic Examples  (3)

Set up an electric potential surface boundary condition:

Set up a default electric potential surface boundary condition:

Compute the electric potential distribution with model variables vars and parameters pars with an electric potential of [TemplateBox[{InterpretationBox[, 1], "V", volts, "Volts"}, QuantityTF]] at the left boundary and a ground potential at the right boundary.

Specify model variables and electrostatic parameters:

Set up and solve an electrostatic PDE:

Visualize the solution:

Scope  (4)

Define model variables vars for an electrostatic analysis with model parameters pars and multiple specific parameter boundary conditions:

1D  (1)

Compute the electric potential distribution between two parallel plates separated by a distance [TemplateBox[{InterpretationBox[, 1], "cm", centimeters, "Centimeters"}, QuantityTF]] and positioned normal to the axis. The left plate is maintained at a constant potential [TemplateBox[{InterpretationBox[, 1], "V", volts, "Volts"}, QuantityTF]], whereas the right plate is grounded, . The region between the plates is characterized by a relative permittivity and a uniform electron charge density [TemplateBox[{InterpretationBox[, 1], {"C", , "/", , {"m", ^, 3}}, coulombs per meter cubed, {{(, "Coulombs", )}, /, {(, {"Meters", ^, 3}, )}}}, QuantityTF]]. The equation to use in the model is given by:

 del .(-epsilon_0epsilon_r del V(x))^(︷^( electrostatic model)) =rho_v

Set up the electrostatic model variables vars:

Set up a region :

Specify electrostatic model parameters:

Specify the electric potential conditions:

Set up the equation:

Solve the PDE:

Visualize the solution:

2D  (1)

Solve for the electric scalar potential in a three-bar electric switch with an electrical conductivity of . The equation to use in the model is given by:

 del .(-sigma del V(x,y))^(︷^( stationary current model)) =0

Set up the electrostatic model variables vars:

Set up a region :

Specify an electrical conductivity :

Specify ground potential at the lower boundary:

Specify an electric potential of [TemplateBox[{InterpretationBox[, 1], "V", volts, "Volts"}, QuantityTF]] at the upper boundary:

Solve the PDE:

Compute the current density vector:

Visualize the current density vector:

3D  (1)

Model a simplified bushing insulator of a transformer with an electric potential condition at the inner walls, which are in contact with the high-voltage conductor, and a ground potential boundary at one of the surface plates (). The equation to use in the model is given by:

 del .(-epsilon_0epsilon_r del V(x,y,z))^(︷^( electrostatic model)) =0

Set up the electrostatic model variables vars:

Set up the geometry:

Specify a relative permittivity :

Specify a ground potential at the surface :

Specify an electric potential of [TemplateBox[{InterpretationBox[, 1], "V", volts, "Volts"}, QuantityTF]] at the inner walls:

Set up the equation:

Solve the PDE:

Visualize the solution:

Wolfram Research (2024), ElectricPotentialCondition, Wolfram Language function, https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html (updated 2024).

Text

Wolfram Research (2024), ElectricPotentialCondition, Wolfram Language function, https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html (updated 2024).

CMS

Wolfram Language. 2024. "ElectricPotentialCondition." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html.

APA

Wolfram Language. (2024). ElectricPotentialCondition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html

BibTeX

@misc{reference.wolfram_2024_electricpotentialcondition, author="Wolfram Research", title="{ElectricPotentialCondition}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html}", note=[Accessed: 01-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_electricpotentialcondition, organization={Wolfram Research}, title={ElectricPotentialCondition}, year={2024}, url={https://reference.wolfram.com/language/ref/ElectricPotentialCondition.html}, note=[Accessed: 01-December-2024 ]}