EstimatedVariogramModel
✖
EstimatedVariogramModel
estimates the best variogram function from values vali given at locations loci.
estimates the best parameters of the variogram function specified by "model".
Details and Options




- Variogram model is also known as variogram and semivariogram.
- EstimatedVariogramModel fits a model to the spatial field data and returns a VariogramModel.
- VariogramModel is typically used as a local model of spatial dependence when predicting values of a spatial field, as in SpatialEstimate.
- The variogram
for a spatial process
at locations
and
is given by
. It is a measure of how quickly the process varies spatially.
- When a process is weakly stationary, then the variogram depends only the difference of locations, i.e.
. And when the process is isotropic, it only depends on the distance between locations
.
- Typical examples of spatial field data that is stationary and isotropic together with the corresponding variogram.
- With automatic settings, this is all that is needed, but if you want to provide detailed control over the variogram model there are further aspects to understand. The two main issues are the range and level of smoothing.
- The range for the variogram indicates how far the dependence on nearby points extends. A larger range variogram will correspond to a slower varying field.
-
- The range of the variogram controls the distance at which points influence the range of prediction of values in SpatialEstimate.
- The smoothness of the prediction is affected by the so-called spatial noise variance of the variogram, which is the value at the origin. It corresponds to adding a white noise model, e.g. measurement errors or true discontinuities in data such as a gold nugget.
- The size of the spatial noise variance controls the level of smoothing of values in SpatialEstimate. In particular, with a nonzero noise variance, the resulting surface will not interpolate the given values but instead approximate them.
- The locations loci can have the forms:
-
{p1,…,pd} geometrical locations GeoPosition[…],GeoPositionENU[…],… geographical locations - The values vali can have the forms:
-
ci scalar value Quantity[ci,"unit"] scalar quantity - The models need to satisfy consistency conditions to be a valid spatial variogram. It must be a non-negative function and satisfy the conditionally negative definite condition
for all weights wi such that
and locations pi. The valid model families can be grouped into tables with similar features, and these are enumerated in VariogramModel.
- The following options can be given:
-
SpatialNoiseLevel Automatic specify the noise variance in the model SpatialTrendFunction Automatic specify the global trend model





Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Estimate a variogram model for concentrations of zinc in soil:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-tzfncx

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-vn8l03

Estimate exponential variogram model:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ppdaf0

Extract the sill and range information:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-m69cmn


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-wkwhat


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ps0ouk

Estimate a white noise variogram model for random data:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xttwcl

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-fw7x7

Estimate white noise variogram model:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-w2dpeu


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xq9wod

Scope (2)Survey of the scope of standard use cases
Estimate variogram model for geographical data:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-5256rf

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-6y0v91

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-f7f4pn

Fit a few models with slow initial variation:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-6xlag2

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-kn5g8c

Visualize the fit of variogram models to the binned variogram of the data:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-0q6xl

Estimate a variogram model from a binned variogram:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-kzrafo

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-42710s


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xzu9jw


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-4qmjoc


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xixk99


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-kpzf5y
Options (3)Common values & functionality for each option
SpatialNoiseLevel (1)
Specify noise level using SpatialNoiseLevel:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-o7k31g

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ewguzi

Estimate variogram model assuming zero noise level:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-z07f8


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-eew2c

Estimate variogram model assuming positive noise level:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-gl2p8a


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ziijr


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-fyrtt7

SpatialTrendFunction (2)
Specify trend function using SpatialTrendFunction:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-t5zjxn

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-vyyzkh

Estimate variogram model assuming constant trend:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xobu7h


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-o694pc

Estimate variogram model assuming linear trend:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-t6ndvn


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-9rnqat


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-18i5z7

Look at data with a linear trend:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-d0o8d0
Without detrending, the variogram is well fit by an unbounded model:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-gafs7w


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-f3qbul

Removing the large scale trend gives us a better idea of the micro scale variation:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-d9f89c


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ez7bwy

Applications (2)Sample problems that can be solved with this function
Estimate a variogram model for SpatialPointData:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-g8lm4f


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-82adb3

Compute the BinnedVariogramList to get an idea of which model family to choose:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-59yrn0


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ymtjrv

Fit a few asymptotic variogram models:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-drcqhv

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-zyd2h3

Visualize the fit of the variogram models to the binned variogram of the data:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-y1sb6i

Out of the four models, Matern fits best and could be used for spatial estimation:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-pwy96y


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-rkbc8j

Use fit residuals to choose the best variogram model:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-s4l1w4

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-3mn2w0


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-r25bbs

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-ll2n2s
Compute the weighted sum of residuals from the fit:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-fe0xkt

Visualize the fit of variogram models to the binned variogram of the data:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-irjnyn

Choose the model with the smallest weighted sum of residuals and use it to compute spatial estimate:

https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-xo76hy


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-qj7w9t


https://wolfram.com/xid/0is8ehdmho3gvjhjscdlp-144ve3

Possible Issues (1)Common pitfalls and unexpected behavior
Wolfram Research (2021), EstimatedVariogramModel, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html.
Text
Wolfram Research (2021), EstimatedVariogramModel, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html.
Wolfram Research (2021), EstimatedVariogramModel, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html.
CMS
Wolfram Language. 2021. "EstimatedVariogramModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html.
Wolfram Language. 2021. "EstimatedVariogramModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html.
APA
Wolfram Language. (2021). EstimatedVariogramModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html
Wolfram Language. (2021). EstimatedVariogramModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html
BibTeX
@misc{reference.wolfram_2025_estimatedvariogrammodel, author="Wolfram Research", title="{EstimatedVariogramModel}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_estimatedvariogrammodel, organization={Wolfram Research}, title={EstimatedVariogramModel}, year={2021}, url={https://reference.wolfram.com/language/ref/EstimatedVariogramModel.html}, note=[Accessed: 26-March-2025
]}