FindGeneratingFunction

FindGeneratingFunction[{a0,a1,},x]

attempts to find a simple generating function in x whose n^(th) series coefficient is an.

FindGeneratingFunction[{{n0,a0},{n1,a1},},x]

attempts to find a simple generating function whose ni^(th) series coefficient is ai.

Details and Options

  • The sequence elements an can be either exact numbers or symbolic expressions.
  • FindGeneratingFunction finds results in terms of a wide range of integer functions, as well as implicit solutions to difference equations represented by DifferenceRoot.
  • If FindGeneratingFunction cannot find a simple generating function that yields the specified sequence, it returns unevaluated.
  • FindGeneratingFunction has the following options:
  • FunctionSpaceAutomaticwhere to look for candidate simple generating functions
    MethodAutomaticmethod to use
    TimeConstraint10how many seconds to search a particular function space or perform a transformation
    ValidationLengthAutomaticsequence length used to validate a candidate generating function found
  • FindGeneratingFunction[list,x] by default uses earlier elements in list to find candidate simple generating functions, then validates the generating functions by looking at later elements.
  • FindGeneratingFunction[list,x] only returns functions that correctly reproduce all elements of list.

Examples

open allclose all

Basic Examples  (2)

Find a generating function for a sequence:

A periodic sequence:

Scope  (2)

Rational functions:

Hypergeometric functions:

Generalizations & Extensions  (1)

FindGeneratingFunction works on arbitrary exact numbers or symbolic expressions:

Properties & Relations  (1)

Use FindSequenceFunction to find a generating function of a sequence:

Verify:

Wolfram Research (2008), FindGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

Text

Wolfram Research (2008), FindGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

CMS

Wolfram Language. 2008. "FindGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

APA

Wolfram Language. (2008). FindGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGeneratingFunction.html

BibTeX

@misc{reference.wolfram_2024_findgeneratingfunction, author="Wolfram Research", title="{FindGeneratingFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FindGeneratingFunction.html}", note=[Accessed: 30-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_findgeneratingfunction, organization={Wolfram Research}, title={FindGeneratingFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/FindGeneratingFunction.html}, note=[Accessed: 30-December-2024 ]}