FindRoot
✖
FindRoot
searches for a numerical solution to the simultaneous equations eqni.
Details and Options


- If the starting point for a variable is given as a list, the values of the variable are taken to be lists with the same dimensions.
- FindRoot returns a list of replacements for x, y, … , in the same form as obtained from Solve.
- FindRoot first localizes the values of all variables, then evaluates f with the variables being symbolic, and then repeatedly evaluates the result numerically.
- FindRoot has attribute HoldAll, and effectively uses Block to localize variables.
- FindRoot[lhs==rhs,{x,x0,x1}] searches for a solution using x0 and x1 as the first two values of x, avoiding the use of derivatives.
- FindRoot[lhs==rhs,{x,xstart,xmin,xmax}] searches for a solution, stopping the search if x ever gets outside the range xmin to xmax.
- If you specify only one starting value of x, FindRoot searches for a solution using Newton methods. If you specify two starting values, FindRoot uses a variant of the secant method.
- If all equations and starting values are real, then FindRoot will search only for real roots. If any are complex, it will also search for complex roots.
- You can always tell FindRoot to search for complex roots by adding 0.I to the starting value.
- The following options can be given:
-
AccuracyGoal Automatic the accuracy sought EvaluationMonitor None expression to evaluate whenever equations are evaluated Jacobian Automatic the Jacobian of the system MaxIterations 100 maximum number of iterations to use Automatic method to be used PrecisionGoal Automatic the precision sought StepMonitor None expression to evaluate whenever a step is taken WorkingPrecision MachinePrecision the precision to use in internal computations - The default settings for AccuracyGoal and PrecisionGoal are WorkingPrecision/2.
- The setting for AccuracyGoal specifies the number of digits of accuracy to seek in both the value of the position of the root, and the value of the function at the root.
- The setting for PrecisionGoal specifies the number of digits of precision to seek in the value of the position of the root.
- FindRoot continues until either of the goals specified by AccuracyGoal or PrecisionGoal is achieved.
- If FindRoot does not succeed in finding a solution to the accuracy you specify within MaxIterations steps, it returns the most recent approximation to a solution that it found. You can then apply FindRoot again, with this approximation as a starting point.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases
Find the solution of a system of two nonlinear equations:

https://wolfram.com/xid/0cqyznmq-cu4e6l

Find a root for a three-component function of three variables:

https://wolfram.com/xid/0cqyznmq-bozf80

You can cause the search to use complex values by giving a complex starting value:

https://wolfram.com/xid/0cqyznmq-bwqef8

When the function is complex for real input, a real starting value may give a complex result:

https://wolfram.com/xid/0cqyznmq-j1hh6


https://wolfram.com/xid/0cqyznmq-cnq18

Generalizations & Extensions (1)Generalized and extended use cases
Options (9)Common values & functionality for each option
AccuracyGoal and PrecisionGoal (1)
Change tolerances for error estimates:

https://wolfram.com/xid/0cqyznmq-jtov3i

Relax error tolerances for stopping:

https://wolfram.com/xid/0cqyznmq-b1fqiy

Make estimated relative distance to the root the main criterion for stopping:

https://wolfram.com/xid/0cqyznmq-clbvh8

DampingFactor (1)
EvaluationMonitor (1)
EvaluationMonitor can be used to keep track of function evaluations used:

https://wolfram.com/xid/0cqyznmq-k9lg6


https://wolfram.com/xid/0cqyznmq-lg1msc

Jacobian (1)
Specify the Jacobian for a "black-box" function:

https://wolfram.com/xid/0cqyznmq-bzb824

https://wolfram.com/xid/0cqyznmq-bewro8

https://wolfram.com/xid/0cqyznmq-h0emjy

Without a specified Jacobian, extra evaluations are used to compute finite differences:

https://wolfram.com/xid/0cqyznmq-dg97nw

If you just know the sparse form, specifying the sparse pattern template saves evaluations:

https://wolfram.com/xid/0cqyznmq-cujvd8


https://wolfram.com/xid/0cqyznmq-dn54r

Inspect the number of Jacobian evaluations needed by different methods:

https://wolfram.com/xid/0cqyznmq-oh5glq


https://wolfram.com/xid/0cqyznmq-epfhp1

MaxIterations (1)
Limit or increase the number of steps taken:

https://wolfram.com/xid/0cqyznmq-fsnzkw


The default number of iterations is 100:

https://wolfram.com/xid/0cqyznmq-c44dwc


Eventually the algorithm stalls out since this mollifier function has all derivatives 0 at :

https://wolfram.com/xid/0cqyznmq-bz8fio

Method (2)
Method options are also explained in Unconstrained Optimization.
Find a root for using different methods:

https://wolfram.com/xid/0cqyznmq-cbnivr

Define a function that monitors the steps and evaluations used by FindRoot:

https://wolfram.com/xid/0cqyznmq-dp8mcj
The default (Newton's) method:

https://wolfram.com/xid/0cqyznmq-m0oq43

Brent's root-bracketing method requiring two initial conditions bracketing the root:

https://wolfram.com/xid/0cqyznmq-rvy67

Secant method, starting with two initial conditions:

https://wolfram.com/xid/0cqyznmq-bx1ah

Select the affine covariant Newton method:

https://wolfram.com/xid/0cqyznmq-bpiom4

StepMonitor (1)
Monitor when iterative steps have been taken:

https://wolfram.com/xid/0cqyznmq-eb9hep

https://wolfram.com/xid/0cqyznmq-jp9vv1

Show the steps on a contour plot of :

https://wolfram.com/xid/0cqyznmq-dd1sd7

Show steps (red) and evaluations (green). A step may require several evaluations:

https://wolfram.com/xid/0cqyznmq-c68nn1

https://wolfram.com/xid/0cqyznmq-gcg7f2

Applications (3)Sample problems that can be solved with this function
Computing Inverse Functions (1)
For an isomorphism , the inverse
is the root of
:

https://wolfram.com/xid/0cqyznmq-d7534v
An approximate inverse for the exponential function:

https://wolfram.com/xid/0cqyznmq-csmeod

It is very close to the built-in Log function:

https://wolfram.com/xid/0cqyznmq-tktrx

A "black-box" function giving the period of an oscillation:

https://wolfram.com/xid/0cqyznmq-c4ky56

https://wolfram.com/xid/0cqyznmq-bcp5a0


https://wolfram.com/xid/0cqyznmq-odifmw


https://wolfram.com/xid/0cqyznmq-bbsmdk

Solving Boundary Value Problems (2)
Solve a boundary value problem ,
using a shooting method:

https://wolfram.com/xid/0cqyznmq-ihlyq8

https://wolfram.com/xid/0cqyznmq-b3h5j6

Use points on either side of the root to give bracketing starting values:

https://wolfram.com/xid/0cqyznmq-bj4jrq


https://wolfram.com/xid/0cqyznmq-d1bz28


https://wolfram.com/xid/0cqyznmq-kf0i1

Solve the boundary-value problem ,
with n collocation points:

https://wolfram.com/xid/0cqyznmq-nrmujs
Consider as a first-order system :

https://wolfram.com/xid/0cqyznmq-k7k7fv
Equations for collocation using the trapezoidal rule:

https://wolfram.com/xid/0cqyznmq-hab678

https://wolfram.com/xid/0cqyznmq-lsn4de
Find a solution for a particular value of ϵ:

https://wolfram.com/xid/0cqyznmq-biyvby

Properties & Relations (2)Properties of the function, and connections to other functions
For a polynomial system of equations, NSolve finds all solutions and FindRoot finds one:

https://wolfram.com/xid/0cqyznmq-ctwrsp

FindRoot will find a single solution using an iterative method:

https://wolfram.com/xid/0cqyznmq-dmofgf

NSolve will find all solutions using a direct method:

https://wolfram.com/xid/0cqyznmq-k17ab7

For equations involving parameters or exact solutions use Solve, Reduce, or FindInstance:

https://wolfram.com/xid/0cqyznmq-bxft1x
Solve will return some solutions:

https://wolfram.com/xid/0cqyznmq-emd72l


Reduce will enumerate all solutions:

https://wolfram.com/xid/0cqyznmq-gm0hf3

FindInstance will find particular instances:

https://wolfram.com/xid/0cqyznmq-biaafk

Possible Issues (2)Common pitfalls and unexpected behavior
If a function is complex, variables are allowed to have complex values:

https://wolfram.com/xid/0cqyznmq-hetx8k

If the function is kept real, variables are also taken to be real:

https://wolfram.com/xid/0cqyznmq-om8qq

It can be time-consuming to compute functions symbolically:

https://wolfram.com/xid/0cqyznmq-1e272o

https://wolfram.com/xid/0cqyznmq-jetqzm

Restricting the function definition avoids symbolic evaluation:

https://wolfram.com/xid/0cqyznmq-oukqck

https://wolfram.com/xid/0cqyznmq-7zmo2z

Wolfram Research (1988), FindRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/FindRoot.html (updated 2003).
Text
Wolfram Research (1988), FindRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/FindRoot.html (updated 2003).
Wolfram Research (1988), FindRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/FindRoot.html (updated 2003).
CMS
Wolfram Language. 1988. "FindRoot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2003. https://reference.wolfram.com/language/ref/FindRoot.html.
Wolfram Language. 1988. "FindRoot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2003. https://reference.wolfram.com/language/ref/FindRoot.html.
APA
Wolfram Language. (1988). FindRoot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindRoot.html
Wolfram Language. (1988). FindRoot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindRoot.html
BibTeX
@misc{reference.wolfram_2025_findroot, author="Wolfram Research", title="{FindRoot}", year="2003", howpublished="\url{https://reference.wolfram.com/language/ref/FindRoot.html}", note=[Accessed: 02-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_findroot, organization={Wolfram Research}, title={FindRoot}, year={2003}, url={https://reference.wolfram.com/language/ref/FindRoot.html}, note=[Accessed: 02-April-2025
]}