FourierDCT[list]
finds the Fourier discrete cosine transform of a list of real numbers.
FourierDCT[list,m]
finds the Fourier discrete cosine transform of type m.


FourierDCT
FourierDCT[list]
finds the Fourier discrete cosine transform of a list of real numbers.
FourierDCT[list,m]
finds the Fourier discrete cosine transform of type m.
Details

- Possible types m of discrete cosine transform for a list
of length
giving a result
are:
-
1 (DCT-I) 2 (DCT-II) 3 (DCT-III) 4 (DCT-IV) - FourierDCT[list] is equivalent to FourierDCT[list,2].
- The inverse discrete cosine transforms for types 1, 2, 3, and 4 are types 1, 3, 2, and 4, respectively.
- The list given in FourierDCT[list] can be nested to represent an array of data in any number of dimensions.
- The array of data must be rectangular.
- If the elements of list are exact numbers, FourierDCT begins by applying N to them.
- FourierDCT can be used on SparseArray objects.
Examples
open all close allBasic Examples (2)
Scope (2)
Generalizations & Extensions (2)
Applications (3)
Compressing Image Data (1)
Cosine Series Expansion (1)
Properties & Relations (3)
Possible Issues (1)
FourierDCT always returns normalized results:
To get unnormalized results, you can multiply by the normalization:
See Also
FourierDST Fourier FourierCosTransform FourierCosCoefficient FourierCosSeries
Net Encoders: AudioMFCC
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), FourierDCT, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierDCT.html.
CMS
Wolfram Language. 2007. "FourierDCT." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierDCT.html.
APA
Wolfram Language. (2007). FourierDCT. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierDCT.html
BibTeX
@misc{reference.wolfram_2025_fourierdct, author="Wolfram Research", title="{FourierDCT}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/FourierDCT.html}", note=[Accessed: 10-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_fourierdct, organization={Wolfram Research}, title={FourierDCT}, year={2007}, url={https://reference.wolfram.com/language/ref/FourierDCT.html}, note=[Accessed: 10-August-2025]}