# FourierTrigSeries

FourierTrigSeries[expr,t,n]

gives the n -order Fourier trigonometric series expansion of expr in t.

FourierTrigSeries[expr,{t1,t2,},{n1,n2,}]

gives the multidimensional Fourier trigonometric series of expr.

# Details and Options • The n -order Fourier trigonometric series of is by default defined to be with and .
• The following options can be given:
•  Assumptions \$Assumptions assumptions on parameters FourierParameters {1,1} parameters to define Fourier trig series GenerateConditions False whether to generate results that involve conditions on parameters
• With the setting FourierParameters->{a,b} the following series is returned: with and .

# Examples

open allclose all

## Basic Examples(2)

Find the 5 -order Fourier trigonometric series of t:

Find the 3 -order bivariate Fourier trigonometric series approximation to :

## Scope(4)

Find the Fourier trigonometric series of an exponential function:

Fourier trigonometric series for a Gaussian function:

Fourier trigonometric series for Abs:

The Fourier trigonometric series for a basis function has only one term:

## Options(1)

### FourierParameters(1)

Use a nondefault setting for: