InverseFourierSinTransform

InverseFourierSinTransform[expr,ω,t]

给出 expr 的符号傅立叶正弦逆变换.

InverseFourierSinTransform[expr,{ω1,ω2,},{t1,t2,}]

给出 expr 的多维傅立叶正弦逆变换.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (3)

范围  (5)

初等函数:

特殊函数:

广义函数:

周期函数:

多元变换:

选项  (3)

Assumptions  (1)

Assumptions 来指定感兴趣的参数区域:

FourierParameters  (1)

FourierParameters 的默认设置是 {0,1}

对该变换的不同定义,采用非默认的设置:

GenerateConditions  (1)

当结果有效时,用 GenerateConditions->True 获得参数条件:

属性和关系  (3)

Asymptotic 计算渐近近似:

FourierSinTransformInverseFourierSinTransform 是互逆的:

对奇函数,结果与 InverseFourierTransform 相同,除了因子 -I

对于 ω>0,结果有因子为 -I 的差异:

可能存在的问题  (1)

傅立叶正弦逆变换可能需要类似 DiracDelta 的广义函数:

Wolfram Research (1999),InverseFourierSinTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

文本

Wolfram Research (1999),InverseFourierSinTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

CMS

Wolfram 语言. 1999. "InverseFourierSinTransform." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

APA

Wolfram 语言. (1999). InverseFourierSinTransform. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html 年

BibTeX

@misc{reference.wolfram_2024_inversefouriersintransform, author="Wolfram Research", title="{InverseFourierSinTransform}", year="1999", howpublished="\url{https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_inversefouriersintransform, organization={Wolfram Research}, title={InverseFourierSinTransform}, year={1999}, url={https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html}, note=[Accessed: 21-November-2024 ]}