gives the symbolic Fourier sine transform of expr.


gives the multidimensional Fourier sine transform of expr.

Details and Options

  • The Fourier sine transform of a function is by default defined to be .
  • The multidimensional Fourier sine transform of a function is by default defined to be .
  • Other definitions are used in some scientific and technical fields.
  • Different choices of definitions can be specified using the option FourierParameters.
  • With the setting TemplateBox[{FourierParameters, paclet:ref/FourierParameters}, RefLink, BaseStyle -> {InlineFormula}]->{a,b} the Fourier sine transform computed by FourierSinTransform is .
  • Assumptions and other options to Integrate can also be given in FourierSinTransform.


open allclose all

Basic Examples  (3)

Scope  (5)

Elementary functions:

Special functions:

Generalized functions:

Periodic functions:

Multivariate transforms:

Options  (3)

Assumptions  (1)

Fourier sine transform of BesselJ is a piecewise function:

FourierParameters  (1)

The default setting for FourierParameters is {0,1}:

Use a nondefault setting for a different definition of the transform:

To get the inverse, use the same FourierParameters setting:

GenerateConditions  (1)

Use GenerateConditions->True to get the parameter conditions necessary for the result to be valid:

Properties & Relations  (3)

Use Asymptotic to compute an asymptotic approximation:

FourierSinTransform and InverseFourierSinTransform are mutual inverses:

Results from FourierSinTransform and FourierTransform differ by a factor of I for odd functions:

The results differ by a factor of I for ω>0:

Possible Issues  (1)

The Fourier sine transform may be given in terms of generalized functions such as DiracDelta:

Neat Examples  (1)

The Fourier sine transform represented in terms of MeijerG:

Introduced in 1999