# FourierSinTransform

FourierSinTransform[expr,t,ω]

gives the symbolic Fourier sine transform of expr.

FourierSinTransform[expr,{t1,t2,},{ω1,ω2,}]

gives the multidimensional Fourier sine transform of expr.

# Details and Options • The Fourier sine transform of a function is by default defined to be .
• The multidimensional Fourier sine transform of a function is by default defined to be .
• Other definitions are used in some scientific and technical fields.
• Different choices of definitions can be specified using the option FourierParameters.
• With the setting the Fourier sine transform computed by FourierSinTransform is .
• Assumptions and other options to Integrate can also be given in FourierSinTransform.

# Examples

open allclose all

## Scope(5)

Elementary functions:

Special functions:

Generalized functions:

Periodic functions:

Multivariate transforms:

## Options(3)

### Assumptions(1)

Fourier sine transform of BesselJ is a piecewise function:

### FourierParameters(1)

The default setting for FourierParameters is {0,1}:

Use a nondefault setting for a different definition of the transform:

To get the inverse, use the same FourierParameters setting:

### GenerateConditions(1)

Use to get the parameter conditions necessary for the result to be valid:

## Properties & Relations(3)

Use Asymptotic to compute an asymptotic approximation:

FourierSinTransform and InverseFourierSinTransform are mutual inverses:

Results from FourierSinTransform and FourierTransform differ by a factor of I for odd functions:

The results differ by a factor of I for ω>0:

## Possible Issues(1)

The Fourier sine transform may be given in terms of generalized functions such as DiracDelta:

## Neat Examples(1)

The Fourier sine transform represented in terms of MeijerG:

Introduced in 1999
(4.0)