JordanMatrix[λ,n]
返回一个维度为 n 和对角元素均为 λ 的 Jordan 矩阵.
JordanMatrix[λ,n,dir]
返回一个按照指定方向 dir 排列的 Jordan 矩阵.


JordanMatrix
JordanMatrix[λ,n]
返回一个维度为 n 和对角元素均为 λ 的 Jordan 矩阵.
JordanMatrix[λ,n,dir]
返回一个按照指定方向 dir 排列的 Jordan 矩阵.
更多信息

- Jordan matrices provide the building blocks for the Jordan decomposition of a matrix.
- JordanMatrix by default returns an n×n matrix
with diagonal elements equal to λ and superdiagonal elements equal to 1.
-
J=(
λ 1 0 … 0 0 λ 1 ⋱ 0 0 0 λ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ 1 0 0 … 0 λ - CharacteristicPolynomial[J,x] is
. Up to sign, so is MatrixMinimalPolynomial[J,x]. »
- The Jordan matrix
occurs naturally for cyclic subspaces: »
, …,
,
- where
is UnitVector[n,i]. JordanDecomposition returns a block Jordan matrix of this form. »
- JordanMatrix[λ,n,dir] uses dir to determine the resulting matrix layout. It must be one of Left (the default) or Right. This directive determines whether the diagonal elements are to the left or right respective to the 1s. »
- The following option can be given:
-
TargetStructure Automatic the structure of the returned matrix - Possible settings for TargetStructure include:
-
Automatic automatically choose the representation returned "Dense" represent the matrix as a dense matrix "Sparse" represent the matrix as a sparse array "Structured" represent the matrix as a structured array

范例
打开所有单元 关闭所有单元范围 (4)
The first argument can be any numeric expression:
The first argument can be any purely symbolic expression:
The first argument must be a scalar:

JordanMatrix defaults to the orientation specification Left:
选项 (2)
TargetStructure (2)
否则返回一个 SparseArray:
For TargetStructure"Structured", the type of structure depends on the direction argument:
Using Right changes the type from UpperTriangularMatrix to LowerTriangularMatrix:
应用 (1)
Construct a matrix m of nonzero entries with a doubly deficient eigenspace, a singly deficient eigenspace and a non-deficient rank-two eigenspace. Compare the Jordan decomposition of m with the matrices used to build m. First, define a Jordan matrix to represent the doubly deficient eigenspace:
Next, create a Jordan matrix for the singly deficient space:
Finally, create a diagonal matrix for the full-rank space:
Combine these blocks into a single matrix using BlockDiagonalMatrix:
Using a similarity matrix with positive entries is likely to give nonzero entries; the following s in fact does:
The eigenvalues match the diagonal entries and dimensions of the three Jordan matrices used to build m:
The zero rows 2 and 3 of vecs show that 5 is doubly deficient, and row 5 shows that 4 is singly deficient:
Now compute JordanDecomposition[m]:
The similarity matrix computed is quite different from s—similarity matrices are not unique:
The computed Jordan matrix also differs from j:
But closer inspection shows that the blocks simply appear in different orders:
If the blocks are ordered by absolute value of the eigenvalue, the matrices are the same:
属性和关系 (7)
CharacteristicPolynomial[JordanMatrix[λ,n],x] is :
MatrixMinimalPolynomial[JordanMatrix[λ,n],x] is :
A Jordan matrix is defined by for
and
:
With the orientation Right, the relations are for
and
:
The vectors ,
,
,
,
are linearly independent:
With the orientation Right, the chain begins at rather than
:
In more than one dimension, a Jordan matrix is non-diagonalizable:
The one-dimensional case is an exception as all matrices are diagonal:
In more than one dimension, a Jordan matrix is not normal:
The determinant of JordanMatrix[λ,n] is :
Thus, the Jordan matrix is invertible if :
The Jordan matrix returned by JordanDecomposition is block diagonal:
Each block is of the form JordanMatrix[λ,k] for some k:
Show that the diagonal entries of j are the eigenvalues of m, possibly in a different order:
文本
Wolfram Research (2025),JordanMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/ref/JordanMatrix.html.
CMS
Wolfram 语言. 2025. "JordanMatrix." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/JordanMatrix.html.
APA
Wolfram 语言. (2025). JordanMatrix. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/JordanMatrix.html 年
BibTeX
@misc{reference.wolfram_2025_jordanmatrix, author="Wolfram Research", title="{JordanMatrix}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/JordanMatrix.html}", note=[Accessed: 12-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_jordanmatrix, organization={Wolfram Research}, title={JordanMatrix}, year={2025}, url={https://reference.wolfram.com/language/ref/JordanMatrix.html}, note=[Accessed: 12-October-2025]}