# PolarCurve

PolarCurve[r,{θ,θmin,θmax}]

gives a polar curve with radius r as a function of angle θ.

# Details

• PolarCurve is also known as polar graph.
• PolarCurve is typically used to describe a geometric region inherently tied to direction and length from a center point.
• PolarCurve[r,{θ,θmin,θmax}] gives a parametric curve with -position and -position corresponding to , .
• PolarCurve[r,θ] is effectively equivalent to PolarCurve[r,{θ,0,2π}].
• PolarCurve is a geometric region and can be used in functions such as ArcLength, Reduce and Integrate.

# Examples

open allclose all

## Basic Examples(1)

Specify a polar curve:

## Scope(2)

Embedding dimension:

Geometric dimension:

Arc length:

## Properties & Relations(2)

Use PolarPlot to plot a polar curve:

Use RegionConvert to convert a polar curve to the parametric form:

Wolfram Research (2024), PolarCurve, Wolfram Language function, https://reference.wolfram.com/language/ref/PolarCurve.html.

#### Text

Wolfram Research (2024), PolarCurve, Wolfram Language function, https://reference.wolfram.com/language/ref/PolarCurve.html.

#### CMS

Wolfram Language. 2024. "PolarCurve." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PolarCurve.html.

#### APA

Wolfram Language. (2024). PolarCurve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolarCurve.html

#### BibTeX

@misc{reference.wolfram_2024_polarcurve, author="Wolfram Research", title="{PolarCurve}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/PolarCurve.html}", note=[Accessed: 15-August-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_polarcurve, organization={Wolfram Research}, title={PolarCurve}, year={2024}, url={https://reference.wolfram.com/language/ref/PolarCurve.html}, note=[Accessed: 15-August-2024 ]}