represents graphics primitives g translated by the vector {x,y,}.

Translate[g,{{x1,y1,},{x2,y2,}, }]

represents multiple copies of g translated by a collection of vectors.


  • Translate[g,{x,y,}] in effect adds {x,y,} to each set of coordinates that appear in the graphics primitives g.
  • For objects specified with scaled coordinates Scaled[{x,y}], Translate effectively applies its transformation to the corresponding ordinary coordinates.
  • Normal[expr] if possible replaces all Translate[gi,] constructs by versions of the gi in which the coordinates have explicitly been transformed.
  • Translate with a list of vectors is a very efficient way to represent multiple, identical copies of an arbitrarily complex shape or image in a graphic.


open allclose all

Basic Examples  (2)

Translation of a 2D graphics primitive:

Translate a 3D graphics primitive:

Scope  (4)

Transformation applied to a 2D shape:

Transformation applied to a 3D shape:

The transformations can be nested:

Make multiple copies of a complex shape:

Properties & Relations  (2)

When possible, Normal will transform the coordinates explicitly:

GeometricTransformation is a generalization of Translate:

Neat Examples  (1)

Rotating and translating a cylinder along a circle:

Wolfram Research (2007), Translate, Wolfram Language function, (updated 2010).


Wolfram Research (2007), Translate, Wolfram Language function, (updated 2010).


Wolfram Language. 2007. "Translate." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2010.


Wolfram Language. (2007). Translate. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_translate, author="Wolfram Research", title="{Translate}", year="2010", howpublished="\url{}", note=[Accessed: 15-July-2024 ]}


@online{reference.wolfram_2024_translate, organization={Wolfram Research}, title={Translate}, year={2010}, url={}, note=[Accessed: 15-July-2024 ]}