# TranslationTransform

gives a TransformationFunction that represents translation of points by a vector v.

# Examples

open allclose all

## Basic Examples(1)

Generate a function representing a translation by the vector {a,b}:

Apply the transformation function to a vector:

## Scope(3)

Translation in four dimensions:

The inverse transform:

Apply the transform five times:

Use matrix operations and homogeneous coordinates:

Transformation applied to a 2D shape:

Transformation applied to a 3D shape:

## Applications(2)

Transforming graphics primitives:

A random translation walk:

## Properties & Relations(4)

The translation transformation is an isometric transform, i.e. preserves distances:

Translating by and then by is the same as translating by :

The inverse of translating by is the same as translating by :

For geometric transformations, use Translate directly:

## Neat Examples(1)

Scale a 3D object about a point :

Translate along the axis:

Translate along the axis:

Translate along the axis:

Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.

#### Text

Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.

#### CMS

Wolfram Language. 2007. "TranslationTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TranslationTransform.html.

#### APA

Wolfram Language. (2007). TranslationTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TranslationTransform.html

#### BibTeX

@misc{reference.wolfram_2024_translationtransform, author="Wolfram Research", title="{TranslationTransform}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/TranslationTransform.html}", note=[Accessed: 10-September-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_translationtransform, organization={Wolfram Research}, title={TranslationTransform}, year={2007}, url={https://reference.wolfram.com/language/ref/TranslationTransform.html}, note=[Accessed: 10-September-2024 ]}