HurwitzZeta[s,a]
gives the Hurwitz zeta function ![TemplateBox[{s, a}, HurwitzZeta] TemplateBox[{s, a}, HurwitzZeta]](Files/HurwitzZeta.en/30.png) .
.
 
     
   HurwitzZeta
HurwitzZeta[s,a]
gives the Hurwitz zeta function ![TemplateBox[{s, a}, HurwitzZeta] TemplateBox[{s, a}, HurwitzZeta]](Files/HurwitzZeta.en/1.png) .
.
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
- The Hurwitz zeta function is defined as an analytic continuation of ![TemplateBox[{s, a}, HurwitzZeta]=sum_(k=0)^(infty)(k+a)^(-s) TemplateBox[{s, a}, HurwitzZeta]=sum_(k=0)^(infty)(k+a)^(-s)](Files/HurwitzZeta.en/2.png) . .
- HurwitzZeta is identical to Zeta for  . .
- Unlike Zeta, HurwitzZeta has singularities at  for non-negative integers for non-negative integers . .
- HurwitzZeta has branch cut discontinuities in the complex  plane running from plane running from to to . .
- For certain special arguments, HurwitzZeta automatically evaluates to exact values.
- HurwitzZeta can be evaluated to arbitrary numerical precision.
- HurwitzZeta automatically threads over lists.
Examples
open all close allBasic Examples (6)
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion at Infinity:
Scope (35)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix HurwitzZeta function using MatrixFunction:
Specific Values (5)
Simple exact values are generated automatically:
HurwitzZeta[s,a] for symbolic a:
HurwitzZeta[s,a] for symbolic s:
Find a value of s for which HurwitzZeta[s,1]=1.05:
Visualization (3)
Plot the HurwitzZeta as a function of its parameter s:
Plot the HurwitzZeta function for various orders:
Plot the real part of HurwitzZeta function:
Plot the imaginary part of HurwitzZeta function:
Function Properties (11)
For positive  , this is simply
, this is simply  :
:
For negative integer  , the domain is just the negative integers:
, the domain is just the negative integers:
For positive  , this is again
, this is again  :
:
Approximate function range of ![TemplateBox[{x, 3}, HurwitzZeta] TemplateBox[{x, 3}, HurwitzZeta]](Files/HurwitzZeta.en/15.png) :
:
HurwitzZeta threads elementwise over lists:
HurwitzZeta is not an analytic function:
![TemplateBox[{x, 3}, HurwitzZeta] TemplateBox[{x, 3}, HurwitzZeta]](Files/HurwitzZeta.en/16.png) is neither non-decreasing nor non-increasing:
 is neither non-decreasing nor non-increasing:
![TemplateBox[{x, 3}, HurwitzZeta] TemplateBox[{x, 3}, HurwitzZeta]](Files/HurwitzZeta.en/20.png) is neither non-negative nor non-positive:
 is neither non-negative nor non-positive:
![TemplateBox[{2, a}, HurwitzZeta] TemplateBox[{2, a}, HurwitzZeta]](Files/HurwitzZeta.en/21.png) has both singularity and discontinuity for negative integers:
 has both singularity and discontinuity for negative integers:
![TemplateBox[{x, 3}, HurwitzZeta] TemplateBox[{x, 3}, HurwitzZeta]](Files/HurwitzZeta.en/22.png) is neither convex nor concave:
 is neither convex nor concave:
TraditionalForm formatting:
Differentiation (3)
Integration (3)
Compute the indefinite integral using Integrate:
Series Expansions (2)
Find the Taylor expansion using Series:
Function Identities and Simplifications (2)
Applications (1)
The word count in a text follows a Zipf distribution:
Fit a ZipfDistribution to the word frequency data:
Fit a truncated ZipfDistribution to counts at most 50 using rhohat as a starting value:
Visualize the CDFs up to the truncation value:
Estimate the proportion of the original data not included in the truncated model:
Properties & Relations (2)
HurwitzZeta can be generated by symbolic solvers:
For  , two-argument Zeta coincides with HurwitzZeta:
, two-argument Zeta coincides with HurwitzZeta:
Possible Issues (2)
HurwitzZeta differs from the two-argument form of Zeta by a different choice of branch cut:
HurwitzZeta includes singular terms, unlike Zeta:
Neat Examples (1)
ComplexPlot of HurwitzZeta function, as a function of  with
 with  :
:
See Also
Related Guides
History
Text
Wolfram Research (2008), HurwitzZeta, Wolfram Language function, https://reference.wolfram.com/language/ref/HurwitzZeta.html.
CMS
Wolfram Language. 2008. "HurwitzZeta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HurwitzZeta.html.
APA
Wolfram Language. (2008). HurwitzZeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HurwitzZeta.html
BibTeX
@misc{reference.wolfram_2025_hurwitzzeta, author="Wolfram Research", title="{HurwitzZeta}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/HurwitzZeta.html}", note=[Accessed: 30-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_hurwitzzeta, organization={Wolfram Research}, title={HurwitzZeta}, year={2008}, url={https://reference.wolfram.com/language/ref/HurwitzZeta.html}, note=[Accessed: 30-October-2025]}
![TemplateBox[{x, a}, HurwitzZeta] TemplateBox[{x, a}, HurwitzZeta]](Files/HurwitzZeta.en/9.png)
![TemplateBox[{x, 3}, HurwitzZeta] TemplateBox[{x, 3}, HurwitzZeta]](Files/HurwitzZeta.en/17.png)
![TemplateBox[{3, a}, HurwitzZeta] TemplateBox[{3, a}, HurwitzZeta]](Files/HurwitzZeta.en/18.png)
![TemplateBox[{4, a}, HurwitzZeta] TemplateBox[{4, a}, HurwitzZeta]](Files/HurwitzZeta.en/19.png)

 derivative with respect to
 derivative with respect to 