gives the polylogarithm function .


gives the Nielsen generalized polylogarithm function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • .
  • .
  • .
  • PolyLog[n,z] has a branch cut discontinuity in the complex plane running from 1 to .
  • For certain special arguments, PolyLog automatically evaluates to exact values.
  • PolyLog can be evaluated to arbitrary numerical precision.
  • PolyLog automatically threads over lists.


open allclose all

Basic Examples  (6)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Series expansion at a singular point:

Scope  (22)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Specific Values  (5)

Simple exact values are generated automatically:

PolyLog for symbolic z:

PolyLog for symbolic n:

Value at zero:

Find a value of z for which PolyLog[1,z ]=1:

Visualization  (3)

Plot the PolyLog function as a function of its parameter n:

Plot the PolyLog function for various orders:

Plot the real part of PolyLog function:

Plot the imaginary part of PolyLog function:

Function Properties  (4)

Real domain of PolyLog:

Complex domain:

Function range of PolyLog:

PolyLog threads elementwise over lists:

TraditionalForm formatting:

Differentiation  (2)

First derivatives with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when n=1/2:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Taylor expansion at a generic point:

Function Identities and Simplifications  (2)

PolyLog is defined through the identity:

Recurrence identity:

Generalizations & Extensions  (7)

Ordinary Polylogarithm Function  (5)

Infinite arguments give symbolic results:

PolyLog can be applied to power series:

Evaluate derivatives exactly:

Series expansion at branch cuts:

Series expansion at infinity:

Give the result for an arbitrary symbolic direction:

Nielsen Generalized Polylogarithm Function  (2)

Special cases:

Series expansion:

Applications  (4)

Plot of the absolute value of the dilogarithm function in the complex plane:

Calculate integrals over FermiDirac distributions:

Volume of a hyperbolic ideal tetrahedron with vertices at , 0, 1, (subject to ):

Plot the volume as a function of the vertex :

Mahler measure of the trivariate polynomial as a function of :

Plot the Mahler measure:

Properties & Relations  (6)

Use FullSimplify to simplify polylogarithms:

Use FunctionExpand to expand polylogarithms:

Numerically find a root of a transcendental equation:


Generate from integrals and sums:

PolyLog appears in special cases of various mathematical functions:

Wolfram Research (1988), PolyLog, Wolfram Language function, https://reference.wolfram.com/language/ref/PolyLog.html (updated 2002).


Wolfram Research (1988), PolyLog, Wolfram Language function, https://reference.wolfram.com/language/ref/PolyLog.html (updated 2002).


@misc{reference.wolfram_2020_polylog, author="Wolfram Research", title="{PolyLog}", year="2002", howpublished="\url{https://reference.wolfram.com/language/ref/PolyLog.html}", note=[Accessed: 27-February-2021 ]}


@online{reference.wolfram_2020_polylog, organization={Wolfram Research}, title={PolyLog}, year={2002}, url={https://reference.wolfram.com/language/ref/PolyLog.html}, note=[Accessed: 27-February-2021 ]}


Wolfram Language. 1988. "PolyLog." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2002. https://reference.wolfram.com/language/ref/PolyLog.html.


Wolfram Language. (1988). PolyLog. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolyLog.html