-
Functions
- BoundaryConditionData
- BoundaryUnitNormal
- DeployBoundaryConditions
- DirichletCondition
- DiscontinuousInterpolatingFunction
- DiscretizeBoundaryConditions
- DiscretizedBoundaryConditionData
- DiscretizedPDEData
- DiscretizePDE
- ElementMesh
- ElementMeshInterpolation
- ElementMeshRegionProduct
- EvaluateOnElementMesh
- FEMMethodData
- HexahedronElement
- InitializeBoundaryConditions
- InitializePDECoefficients
- InitializePDEMethodData
- InterpolatingFunction
- Line
- LinearSolve
- LineElement
- NDEigensystem
- NDSolve
- NeumannValue
- NIntegrate
- NumericalRegion
- PDECoefficientData
- PDESolve
- PeriodicBoundaryCondition
- PointElement
- PrismElement
- ProcessPDESolutions
- QuadElement
- TetrahedronElement
- ToBoundaryMesh
- ToElementMesh
- ToGradedMesh
- TriangleElement
- Related Guides
- Tech Notes
-
-
Functions
- BoundaryConditionData
- BoundaryUnitNormal
- DeployBoundaryConditions
- DirichletCondition
- DiscontinuousInterpolatingFunction
- DiscretizeBoundaryConditions
- DiscretizedBoundaryConditionData
- DiscretizedPDEData
- DiscretizePDE
- ElementMesh
- ElementMeshInterpolation
- ElementMeshRegionProduct
- EvaluateOnElementMesh
- FEMMethodData
- HexahedronElement
- InitializeBoundaryConditions
- InitializePDECoefficients
- InitializePDEMethodData
- InterpolatingFunction
- Line
- LinearSolve
- LineElement
- NDEigensystem
- NDSolve
- NeumannValue
- NIntegrate
- NumericalRegion
- PDECoefficientData
- PDESolve
- PeriodicBoundaryCondition
- PointElement
- PrismElement
- ProcessPDESolutions
- QuadElement
- TetrahedronElement
- ToBoundaryMesh
- ToElementMesh
- ToGradedMesh
- TriangleElement
- Related Guides
- Tech Notes
-
Functions
Finite Element Method

The finite element method is a numerical method to solve differential equations over arbitrary-shaped domains. The finite element method is implemented in NDSolve as a spacial discretization method, and the primary usage of the finite element method is through NDSolve. Furthermore, interfaces to low-level finite element functionality are provided.
NDSolve — numerically solve differential equations
NIntegrate — numerically integrate
NDEigensystem — numerically compute differential eigenvalues and eigenvectors
Mesh Generation
ToBoundaryMesh — convert various input to a boundary mesh
ToElementMesh — convert various input to a full mesh
ToGradedMesh — convert Line graphics primitives input to a graded mesh
ElementMeshRegionProduct — the Cartesian products of element meshes
ElementMesh — a mesh data structure
NumericalRegion — a symbolic and mesh data structure
PointElement ▪ LineElement ▪ TriangleElement ▪ QuadElement ▪ TetrahedronElement ▪ PrismElement ▪ HexahedronElement
Initialization
InitializePDECoefficients — initialize partial differential equation coefficients
InitializeBoundaryConditions — initialize boundary conditions
InitializePDEMethodData — initialize partial differential equation method data
PDECoefficientData ▪ BoundaryConditionData ▪ FEMMethodData
Discretization
DiscretizePDE — discretize initialized partial differential equations
DiscretizeBoundaryConditions — discretize initialized boundary conditions
DiscretizedPDEData ▪ DiscretizedBoundaryConditionData ▪ DirichletCondition ▪ NeumannValue ▪ PeriodicBoundaryCondition ▪ BoundaryUnitNormal
Solution
DeployBoundaryConditions — deploy discretized boundary conditions into discretized partial differential equations
LinearSolve — solve linear systems of equations
PDESolve — solve linear and nonlinear systems of equations
Post Processing
ProcessPDESolutions — process solution data into InterpolatingFunction objects
ElementMeshInterpolation — creates an InterpolatingFunction from a solution over a mesh
EvaluateOnElementMesh — creates an interpolating function from evaluating a function over a mesh
DiscontinuousInterpolatingFunction — creates discontinuous interpolating function from an InterpolatingFunction
Related Tech Notes
-
▪
- Finite Element Method User Guide ▪
- Solving Partial Differential Equations with the Finite Element Method ▪
- Element Mesh Generation ▪
- Element Mesh Visualization ▪
- Finite Element Usage Tips ▪
- NDSolve Options for Finite Elements ▪
- Finite Element Programming ▪
- Nonlinear Finite Element Verification Tests