WOLFRAM

PieChart[{y1,y2,,yn}]

makes a pie chart with sector angle proportional to y1, y2, .

PieChart[{,wi[yi,],,wj[yj,],}]

makes a pie chart with sector features defined by the symbolic wrappers wk.

PieChart[{data1,data2,}]

makes a pie chart from multiple datasets datai.

Details and Options

Examples

open allclose all

Basic Examples  (5)Summary of the most common use cases

Generate a pie chart for a list of values:

Out[1]=1

Generate a donut chart for a list of values:

Out[1]=1

Generate a pie chart for multiple datasets:

Out[1]=1

Show multiple sets as a row of pie charts:

Out[2]=2

Use categorical labels:

Out[1]=1

Categorical legends:

Out[2]=2

Set the style for sectors:

Out[1]=1

Scope  (38)Survey of the scope of standard use cases

Data and Layouts  (13)

Items in a dataset are grouped together:

Out[1]=1

Datasets do not need to have the same number of items:

Out[1]=1

Nonreal data is taken to be missing and typically is ignored in the pie chart:

Out[1]=1

The data may include units:

Out[1]=1

Specify the units to use:

Out[1]=1

The time stamps in TimeSeries, EventSeries, and TemporalData are ignored:

Out[1]=1

The values in associations are taken as the values of the sectors:

Out[1]=1

Use the keys as labels:

Out[2]=2

Use the keys as callouts above the sectors:

Out[3]=3

Use the keys as legends:

Out[4]=4

Associations can be nested:

Out[1]=1

The weights in WeightedData are ignored:

Out[1]=1

The censoring and truncation information in EventData is ignored:

Out[2]=2

Use different layouts to display multiple datasets:

Out[1]=1

Control the direction of sectors:

Out[1]=1

Control the starting angle of sectors:

Out[2]=2

Control the starting radius of sectors:

Out[1]=1

Adjust the spacing between sectors and groups of sectors:

Out[1]=1

Tabular Data  (1)

Get tabular data, counted by the "class" and "survived" columns:

Out[1]=1

Create a chart of how many passengers were in each ticket class:

Out[2]=2
Out[3]=3

Show how many passengers survived and how many perished:

Out[4]=4
Out[5]=5

Display the number of passengers who survived by ticket class:

Out[6]=6
Out[7]=7

Use stacked sectors for the display:

Out[8]=8

Wrappers  (5)

Use wrappers on individual data, datasets, or collections of datasets:

Out[1]=1

Wrappers can be nested:

Out[1]=1

Override the default tooltips:

Out[1]=1

Use any object in the tooltip:

Out[2]=2

Use PopupWindow to provide additional drilldown information:

Out[1]=1

Button can be used to trigger any action:

Out[1]=1

Styling and Appearance  (7)

Use an explicit list of styles for the sectors:

Out[1]=1

Use any gradient or indexed color schemes from ColorData:

Out[1]=1

Use color schemes designed for charting:

Out[1]=1
Out[2]=2

ChartBaseStyle can be used to set an initial style for all chart elements:

Out[1]=1

Style can be used to override styles:

Out[1]=1

Use built-in programmatically generated sectors:

Out[1]=1
Out[2]=2

For detailed settings use Palettes ChartElementSchemes:

Out[3]=3

Use a theme with a high-contrast color scheme and bezel sectors:

Out[1]=1

Use a monochrome theme:

Out[2]=2

Labeling and Legending  (12)

Use Labeled to add a label to a sector:

Out[1]=1

Use symbolic positions for label placement:

Out[1]=1
Out[2]=2
Out[3]=3

Provide categorical labels for the columns of data:

Out[1]=1

For rows of data:

Out[2]=2

For both:

Out[3]=3

Use Placed to control the positioning of labels, using the same positions as for Labeled:

Out[1]=1

Use Callout to add a label to a sector:

Out[1]=1

Change the appearance of the callout:

Out[1]=1

Automatically position callouts:

Out[1]=1

Provide value labels for sectors by using LabelingFunction:

Out[1]=1

Generate callouts from the data:

Out[1]=1

Add categorical legend entries for the columns of data:

Out[1]=1

For rows of data:

Out[2]=2

Use Legended to add additional legend entries:

Out[1]=1

Use Placed to affect the positioning of legends:

Out[1]=1

Options  (75)Common values & functionality for each option

ChartBaseStyle  (5)

Use ChartBaseStyle to style sectors:

Out[1]=1

ChartBaseStyle combines with ChartStyle:

Out[1]=1

ChartStyle may override settings for ChartBaseStyle:

Out[1]=1

ChartBaseStyle combines with Style:

Out[1]=1

Style may override settings for ChartBaseStyle:

Out[2]=2

ChartBaseStyle combines with ColorFunction:

Out[1]=1

ColorFunction may override settings for ChartBaseStyle:

Out[2]=2

ChartElementFunction  (6)

Possible string values for ChartElementFunction:

Out[1]=1

For detailed settings, use Palettes ChartElementSchemes:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Use ChartElementData to specify the full chart element rendering function:

Out[1]=1

Write a custom ChartElementFunction:

Out[2]=2
Out[4]=4

Use metadata passed on from the input, in this case charting the data:

Out[3]=3

Built-in element functions may have options; use Palettes ChartElementSchemes to set them:

Out[1]=1
Out[2]=2

ChartLabels  (8)

By default, labels are placed radially centered:

Out[1]=1

Labeled wrappers in data will place additional labels:

Out[2]=2

Use Placed to control label placement:

Out[1]=1

Positions outside the sector:

Out[2]=2

Callout positions:

Out[3]=3

Coordinate based placement relative to a sector:

Out[1]=1

Place all labels at the first outer corner and vary the coordinates within the label:

Out[1]=1

Use the third argument to Placed to control formatting:

Out[1]=1
Out[2]=2

Use a hyperlink label:

Out[3]=3

By default, labels are associated with columns of data:

Out[1]=1

Associate labels with rows or datasets:

Out[2]=2

Label both rows and columns:

Out[3]=3

Use Placed to affect placements:

Out[4]=4

Use Callout to connect the labels to the sectors:

Out[1]=1

Place multiple labels:

Out[1]=1

ChartLayout  (4)

ChartLayout is grouped by default in concentric rings:

Out[1]=1
Out[2]=2

Use stacked sectors:

Out[1]=1

The stacked layout can effectively display many datasets:

Out[2]=2

Place each set in a separate panel:

Out[1]=1

Use a row instead of a column:

Out[2]=2

Use multiple columns or rows:

Out[1]=1

Prefer full columns or rows:

Out[2]=2

ChartLegends  (8)

Generate a legend based on chart style:

Out[1]=1

Use Legended to add additional legend entries:

Out[1]=1

Use Legended to specify individual legend entries:

Out[1]=1

Legended adds additional legend entries:

Out[1]=1

Generate a legend for datasets:

Out[1]=1

Unused legend labels are dropped:

Out[1]=1

Legends can be applied to several dimensions:

Out[1]=1

Use Placed to control the placement of legends:

Out[1]=1

ChartStyle  (7)

Use ChartStyle to style sectors:

Out[1]=1

Give a list of styles:

Out[1]=1

Use gradient colors from ColorData:

Out[2]=2

Use indexed colors from ColorData:

Out[3]=3

Use indexed colors optimized for charting:

Out[1]=1
Out[2]=2

Styles are used cyclically:

Out[1]=1

Style each column of data:

Out[1]=1

Style each row of data:

Out[2]=2

Style both rows and columns of data:

Out[3]=3

With both row and column styles, the last style may override earlier ones:

Out[4]=4

Style overrides settings for ChartStyle:

Out[1]=1
Out[2]=2

ColorFunction overrides settings for ChartStyle:

Out[1]=1
Out[2]=2

ColorFunction  (3)

Color by sector angle:

Out[1]=1

Use ColorFunctionScaling->False to get unscaled height values:

Out[1]=1

ColorFunction overrides styles in ChartStyle:

Out[1]=1

Use ColorFunction to combine different style effects:

Out[2]=2

ColorFunctionScaling  (3)

By default, scaled height values are used:

Out[1]=1

Set ColorFunctionScaling to False to allow raw values to be passed to the color function:

Out[1]=1

Use ColorFunctionScaling->False to get unscaled height values:

Out[1]=1

ImageSize  (7)

Use named sizes, such as Tiny, Small, Medium and Large:

Out[1]=1

Specify the width of the plot:

Out[1]=1

Specify the height of the plot:

Out[2]=2

Allow the width and height to be up to a certain size:

Out[1]=1

Specify the width and height for a graphic, padding with space if necessary:

Out[1]=1

Use maximum sizes for the width and height:

Out[1]=1

Use ImageSizeFull to fill the available space in an object:

Out[2]=2

Specify the image size as a fraction of the available space:

Out[1]=1

LabelingFunction  (7)

Use automatic labeling by values through Tooltip and StatusArea:

Out[1]=1

Do no labeling:

Out[1]=1

Use Placed to control label placement:

Out[1]=1

Positions outside the sector:

Out[2]=2

Callout positions:

Out[3]=3

Coordinate-based placement relative to a sector:

Out[1]=1

Use Callout to place labels automatically:

Out[1]=1

Control the formatting of labels:

Out[1]=1

Use the given chart labels as arguments to the labeling function:

Out[1]=1

Place complete labels as tooltips:

Out[2]=2

LabelingSize  (4)

Textual labels are shown at their actual sizes:

Out[1]=1

Image labels are automatically resized:

Out[1]=1

Specify a maximum size for textual labels:

Out[1]=1

Specify a maximum size for image labels:

Out[2]=2

Show image labels at their natural sizes:

Out[1]=1

PerformanceGoal  (3)

Generate a pie chart with interactive highlighting:

Out[1]=1

Emphasize performance by disabling interactive behaviors:

Out[1]=1

Typically, less memory is required for noninteractive charts:

Out[1]=1

PlotTheme  (1)

Use a theme with a high-contrast color scheme and bezel sectors:

Out[1]=1

Change the chart element function:

Out[2]=2

SectorOrigin  (4)

By default, sectors start on the left and add clockwise:

Out[1]=1

Generate a donut chart for a list of values:

Out[1]=1

Reverse the direction of the sectors:

Out[1]=1

Rotate the chart by :

Out[1]=1

SectorSpacing  (5)

Use automatically determined spacing between sectors:

Out[1]=1

Use no spacing:

Out[1]=1

Use symbolic presets:

Out[1]=1

Use explicit spacing between sectors:

Out[1]=1

Use explicit spacing between sectors and groups of sectors:

Out[1]=1

Applications  (15)Sample problems that can be solved with this function

Create a circular histogram:

Out[1]=1
Out[2]=2

Improve legibility of small segments by charting them with an auxiliary pie chart:

Out[2]=2
Out[3]=3

Improve legibility of small segments by charting them with an auxiliary bar chart:

Use a stacked bar chart to represent small segments:

Out[2]=2
Out[3]=3

Click on the sectors to hear the name of the country and its GDP per capita:

Out[2]=2

Proportion of each color in the United States flag:

Out[1]=1

Tally the most frequently used colors:

Out[2]=2

Chart it:

Out[3]=3

GDP comparison of G7 nations:

Out[1]=1

Percentage of total elements discovered by countries:

Out[3]=3

Count the number of times each letter occurs in a sentence:

Out[2]=2

Group sectors by product type:

Out[3]=3

Create a pie chart capable of interactive drilling down of a stock portfolio:

Mouse over a sector to get a pie chart of the companies that comprise that sector:

Out[6]=6

Click on a sector to get a pie chart of the companies that comprise that sector:

Out[7]=7

Display oil data for the G15 countries using pie charts to indicate import and export:

Out[2]=2

Create a chart of individual pie chart sectors:

Out[3]=3

Create a pie chart histogram of element discovery years from 1700 to 2000:

Define a chart element function that stores bin intervals and count data using Sow:

Create a histogram of the discovery years and store the bin interval and frequencies:

Create a histogram pie chart of element discovery years:

Out[4]=4

Visualize chemical composition using pie charts:

Out[2]=2

Analyze locations of strong earthquakes:

Out[1]=1
Out[2]=2

Define continents and oceans:

Out[3]=3

Count the number of earthquakes per region:

Out[5]=5
Out[6]=6

Select regions with earthquakes:

Out[8]=8

Properties & Relations  (4)Properties of the function, and connections to other functions

Use PieChart3D to get a 3D rendering of pie charts:

Out[1]=1

PieChart is a special case of SectorChart:

Out[1]=1

Use BarChart and BarChart3D to draw a list of data as bars:

Out[1]=1

Use ListPlot and ListLinePlot to produce line graphs:

Out[1]=1

Neat Examples  (3)Surprising or curious use cases

A hue saturation color wheel:

Out[1]=1

Chartwork:

Out[1]=1
Out[1]=1
Wolfram Research (2008), PieChart, Wolfram Language function, https://reference.wolfram.com/language/ref/PieChart.html (updated 2025).
Wolfram Research (2008), PieChart, Wolfram Language function, https://reference.wolfram.com/language/ref/PieChart.html (updated 2025).

Text

Wolfram Research (2008), PieChart, Wolfram Language function, https://reference.wolfram.com/language/ref/PieChart.html (updated 2025).

Wolfram Research (2008), PieChart, Wolfram Language function, https://reference.wolfram.com/language/ref/PieChart.html (updated 2025).

CMS

Wolfram Language. 2008. "PieChart." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/PieChart.html.

Wolfram Language. 2008. "PieChart." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/PieChart.html.

APA

Wolfram Language. (2008). PieChart. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PieChart.html

Wolfram Language. (2008). PieChart. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PieChart.html

BibTeX

@misc{reference.wolfram_2025_piechart, author="Wolfram Research", title="{PieChart}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/PieChart.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_piechart, author="Wolfram Research", title="{PieChart}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/PieChart.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_piechart, organization={Wolfram Research}, title={PieChart}, year={2025}, url={https://reference.wolfram.com/language/ref/PieChart.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_piechart, organization={Wolfram Research}, title={PieChart}, year={2025}, url={https://reference.wolfram.com/language/ref/PieChart.html}, note=[Accessed: 04-April-2025 ]}