FEMDocumentation`
FEMDocumentation`

PDESolve

PDESolve[cdata,bcdata,vd,sd,mdata]

solves a PDE based on coefficient data cdata, boundary condition data bcdata, variable data vd, solution data sd and method data mdata to return new solution data.

Details and Options

Examples

open allclose all

Basic Examples  (3)

Load the finite element package:

Set up a NumericalRegion:

Set up variable and solution data:

Initialize the partial differential equation data:

Set up the solution of the linear PDE . Initialize the linear coefficients:

Initialize the linear boundary condition data:

Solve the PDE:

Post-process the PDE:

Set up the solution of the nonlinear PDE . Initialize the nonlinear coefficients:

Initialize nonlinear boundary condition data:

Specify an initial guess:

Solve the nonlinear PDE:

Post-process the PDE:

Options  (8)

"FindRootOptions"  (5)

Inspect the number of function calls, steps and Jacobian evaluations needed:

Specify that PDESolve is to use the default FindRoot root-finding algorithm:

Specify that PDESolve is to use the default affine covariant Newton method:

Set up PDESolve to not use Broyden updates:

Set a PrecisionGoal for the default PDESolve FindRoot method:

"LinearSolver"  (3)

Specify PDESolve to use a direct method for LinearSolve:

Specify PDESolve to use a Krylov method for LinearSolve:

Specify PDESolve to use a customer function for LinearSolve:

Properties & Relations  (1)

Options given to PDESolve can be given to NDSolve by specifying "PDESolveOptions":

Wolfram Research (2019), PDESolve, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (updated 2020).

Text

Wolfram Research (2019), PDESolve, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (updated 2020).

CMS

Wolfram Language. 2019. "PDESolve." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html.

APA

Wolfram Language. (2019). PDESolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html

BibTeX

@misc{reference.wolfram_2022_pdesolve, author="Wolfram Research", title="{PDESolve}", year="2020", howpublished="\url{https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}", note=[Accessed: 28-June-2022 ]}

BibLaTeX

@online{reference.wolfram_2022_pdesolve, organization={Wolfram Research}, title={PDESolve}, year={2020}, url={https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}, note=[Accessed: 28-June-2022 ]}