PDESolve
PDESolve[cdata,bcdata,vd,sd,mdata]
solves a PDE based on coefficient data cdata, boundary condition data bcdata, variable data vd, solution data sd and method data mdata to return new solution data.
Details and Options
- PDESolve solves linear and nonlinear stationary partial differential equations.
- PDESolve returns a list that is the solution data.
- The coefficient data cdata is a PDECoefficientData object generated by InitializePDECoefficients.
- The boundary condition data bcdata is a BoundaryConditionData object generated by InitializeBoundaryConditions.
- Variable data vd and solution data sd are corresponding lists of variables and values. Templates for vd and sd may be generated using NDSolve`VariableData and NDSolve`SolutionData, and components may be set using NDSolve`SetSolutionDataComponent.
- The method data mdata is a PDE method data object, such as FEMMethodData, generated through InitializePDEMethodData.
- PDESolve takes the following options:
-
"FindRootOptions" Automatic specify options for FindRoot "LinearSolver" Automatic specify a linear solver and options for it - Options given to PDESolve can be given to NDSolve by specifying "PDESolveOptions". »
- Setting the option from NDSolve and related functions is explained in NDSolve Finite Element Options.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Load the finite element package:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-j4klzi
Set up a NumericalRegion:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-nx6wf8

Set up variable and solution data:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-b1fv3m
Initialize the partial differential equation data:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-bly9dw

Set up the solution of the linear PDE . Initialize the linear coefficients:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-x43tiv

Initialize the linear boundary condition data:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-7wkrax


https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-6avfpj

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-lboorj

Set up the solution of the nonlinear PDE . Initialize the nonlinear coefficients:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-rne025

Initialize nonlinear boundary condition data:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-vpnwli


https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-qig5x3


https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-qpgsf1

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-2u143d

Options (8)Common values & functionality for each option
"FindRootOptions" (5)
Inspect the number of function calls, steps and Jacobian evaluations needed:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-qhsrxl
Specify that PDESolve is to use the default FindRoot root-finding algorithm:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-xpmvd3
Specify that PDESolve is to use the default affine covariant Newton method:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-jhtmvv
Set up PDESolve to not use Broyden updates:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-8oeke5
Set a PrecisionGoal for the default PDESolve FindRoot method:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-qwi99z
"LinearSolver" (3)
Specify PDESolve to use a direct method for LinearSolve:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-cvsm5d
Specify PDESolve to use a Krylov method for LinearSolve:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-1o6svn
Specify PDESolve to use a customer function for LinearSolve:

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-f0hoo9
Properties & Relations (1)Properties of the function, and connections to other functions
Options given to PDESolve can be given to NDSolve by specifying "PDESolveOptions":

https://wolfram.com/xid/0bmo90qj3dh9obgvoec93mq-k61l5x
Wolfram Research (2019), PDESolve, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (updated 2020).
Text
Wolfram Research (2019), PDESolve, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (updated 2020).
Wolfram Research (2019), PDESolve, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (updated 2020).
CMS
Wolfram Language. 2019. "PDESolve." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html.
Wolfram Language. 2019. "PDESolve." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html.
APA
Wolfram Language. (2019). PDESolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html
Wolfram Language. (2019). PDESolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html
BibTeX
@misc{reference.wolfram_2025_pdesolve, author="Wolfram Research", title="{PDESolve}", year="2020", howpublished="\url{https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}", note=[Accessed: 31-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_pdesolve, organization={Wolfram Research}, title={PDESolve}, year={2020}, url={https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}, note=[Accessed: 31-March-2025
]}