BinomialPointProcess

BinomialPointProcess[n,reg]

代表一个在区域 reg 中有 n 个点的二项式点过程.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

BinomialPointProcess 抽样:

对数个实现进行抽样:

范围  (2)

从任何 RegionEmbeddingDimension 等于其 RegionDimension 的有效 RegionQ 中进行抽样:

在某地理区域中创建二项点过程:

在同样的区域模拟点:

应用  (1)

一位射手在范围内随机对一个直径为1米的圆形目标射击12发子弹. 模拟可能的子弹路径:

属性和关系  (4)

BinomialPointProcess 中的点的数量由 n 定义:

在单位圆盘上模拟 BinomialPointProcess

有边界的子集上对应的 PointCountDistribution

与概率分布函数比较自己种点数的直方图:

BinomialDistribution 拟合到点数:

检验拟合优度:

与理论分布比较检验:

区域覆盖上的 PointCountDistribution

定义一个三组覆盖:

覆盖的点数分布:

为二项点过程计算无类型概率:

对于矩形:

二项点过程为静止的其强度有平移不变性:

子区域内的点数分布:

平移子区域内的点数分布:

Wolfram Research (2020),BinomialPointProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BinomialPointProcess.html.

文本

Wolfram Research (2020),BinomialPointProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BinomialPointProcess.html.

CMS

Wolfram 语言. 2020. "BinomialPointProcess." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/BinomialPointProcess.html.

APA

Wolfram 语言. (2020). BinomialPointProcess. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/BinomialPointProcess.html 年

BibTeX

@misc{reference.wolfram_2024_binomialpointprocess, author="Wolfram Research", title="{BinomialPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/BinomialPointProcess.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_binomialpointprocess, organization={Wolfram Research}, title={BinomialPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/BinomialPointProcess.html}, note=[Accessed: 21-November-2024 ]}