InhomogeneousPoissonPointProcess
✖
InhomogeneousPoissonPointProcess
represents an inhomogeneous Poisson point process with density function in
.
Details


- InhomogeneousPoissonPointProcess is also known as a nonstationary Poisson point process or an independent scattering point process.
- Typical uses include modeling varying density that depends only on the location
, such as varying growth conditions.
- InhomogeneousPoissonPointProcess generates points in a region according to the specified density function μ with no point interactions.
- With density function μ, the point count in an observation region
is distributed as PoissonDistribution with mean
.
- Density function μ can be given as:
-
func a function of vectors geofunc a function of geo locations PointDensityFunction density function from point collections - The number of points
in disjoint regions
for a Poisson point process are independent
, where
are non-negative integers.
- A point configuration
with density function μ in an observation region
with volume
has density function
with respect to PoissonPointProcess[1,d].
- The Papangelou conditional density
for adding a point
to a point configuration
is
for an inhomogeneous Poisson point process with density function μ.
- The density function
can be any positive integrable function in
and d can be any positive integer.
- InhomogeneousPoissonPointProcess can be used with such functions as RipleyK and RandomPointConfiguration.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Sample from an InhomogeneousPoissonPointProcess:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-d2ygqz


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-h4gucl

Sample from an InhomogeneousPoissonPointProcess defined on the surface of the Earth:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-dm5er3


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-i31ee1

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-h6txtp


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-c96vjb

Sample from a nonparametric point density:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-b90w1f

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-64gnc


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-ix5ii


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-hzzzib


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-bq8gg0

Define a point process with the computed point density function and check if it is valid:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-60uixk

Simulate multiple point configurations:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-b0pe0o


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-8fwxjq

Scope (4)Survey of the scope of standard use cases
Simulate several realizations:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-gwc84f


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-hdfqz


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-bi5nn

Sample from any valid RegionQ, whose RegionEmbeddingDimension is equal to its RegionDimension:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-qxrhco

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-pacet0


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-ydq337


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-h8cla8

Gaussian scattering is an example of isotropic inhomogeneous Poisson point process:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-euilfy
Simulate the process over a rectangle:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-v2i013


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-20fri3

PointCountDistribution is invariant with respect to a rotation about the origin:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-tuiigy

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-h9jzsa

Point count distribution in the rotated region:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-l1ywun


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-c1vi5b

The distributions are the same as identified by equal means:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-5o7bro


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-ec4jta

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-gljgnt


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-hcgovd

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-le8h7i


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-kokgfx

Options (1)Common values & functionality for each option
Method (1)
Sample from an InhomogeneousPoissonPointProcess using different methods:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-8j1bt

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-qr7z0c

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-8i748x

Use the Markov chain Monte Carlo method:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-r8z4hx


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-mhakyk

Applications (2)Sample problems that can be solved with this function
Point process with density depending on the distance to a line, like a fault line:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-vftrvq

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-34t3e5


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-maecpu

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-x1iba6

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-2g730v


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-3hilp7

Simulate possible point pattern of seeds fallen around a tree:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-o57cuy

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-y3my1u


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-0d3g9i

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-vdwx57

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-ty59wu


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-rmygeo

Properties & Relations (5)Properties of the function, and connections to other functions
Inhomogeneous Poisson point process with constant density autoevaluates to PoissonPointProcess:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-z8gj8t

The expected number of points in a region for InhomogeneousPoissonPointProcess follows a PoissonDistribution:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-bjczc4
Compute the point count distribution over a rectangle:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-n0t2hb

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-dk4cli


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-etketl

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-nsu9f5


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-nbx6or

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-5zjd1m

Compute void probabilities for an inhomogeneous Poisson point process:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-rdmut

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-dcc7zf

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-60ixxo


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-9or9on


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-xs30cs

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-fwyxlc


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-ct4t5q


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-0l9gkm

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-5l86az


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-cath7r

Inhomogeneous Poisson point process is not stationary—the density depends on the location:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-fugl3p
Point count distribution in a subregion:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-em07kv

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-p79axg

Point count distribution in the translated subregion:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-1nahei
The region measures are the same:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-uqs7fj


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-fx8adb

The densities as expressed via PointCountDistribution differ:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-kr3wtf


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-df06jd

InhomogeneousPoissonPointProcess with a constant density function is PoissonPointProcess:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-nd63ia
The point count distribution in a disk:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-pahxp9

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-zexcc4

Point count distribution for a corresponding Poisson point process in the same region:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-4vy82f


https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-e9ghmv

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-irlzgr
The point count distribution in a ball:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-6kz6no

Point count distribution for a corresponding Poisson point process in the same region:

https://wolfram.com/xid/0dlw5h8g5ijxoeg2vw4p2whi39e3m-bo69a7

Neat Examples (1)Surprising or curious use cases
Wolfram Research (2020), InhomogeneousPoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html.
Text
Wolfram Research (2020), InhomogeneousPoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html.
Wolfram Research (2020), InhomogeneousPoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html.
CMS
Wolfram Language. 2020. "InhomogeneousPoissonPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html.
Wolfram Language. 2020. "InhomogeneousPoissonPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html.
APA
Wolfram Language. (2020). InhomogeneousPoissonPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html
Wolfram Language. (2020). InhomogeneousPoissonPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html
BibTeX
@misc{reference.wolfram_2025_inhomogeneouspoissonpointprocess, author="Wolfram Research", title="{InhomogeneousPoissonPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html}", note=[Accessed: 29-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inhomogeneouspoissonpointprocess, organization={Wolfram Research}, title={InhomogeneousPoissonPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/InhomogeneousPoissonPointProcess.html}, note=[Accessed: 29-April-2025
]}