BooleanCountingFunction
✖
BooleanCountingFunction
更多信息

- BooleanCountingFunction[spec] 给出一个布尔函数对象,其作用方式类似 Function.
- BooleanCountingFunction[spec][a1,a2,…] 给出等价于显式布尔表达式 BooleanCountingFunction[spec,{a1,a2,…}] 的一个隐式表示.
- BooleanConvert 将 BooleanCountingFunction[spec][vars] 转换为一个明确的布尔表达式.
- 当 kmin、kmin+s、…、kmax 个变量为 True 时,BooleanCountingFunction[{kmin,kmax,s},…] 给出 True.
- 任何对称的布尔函数可以用 BooleanCountingFunction 唯一表示.
- 在 BooleanCountingFunction[spec,{a1,a2,…},form],对 BooleanConvert 给出可能形式.
- BooleanCountingFunction[spec,{a1,a2,…}] 缺省下按析取范式给出一个表达式.
范例
打开所有单元关闭所有单元基本范例 (1)常见实例总结
范围 (6)标准用法实例范围调查

https://wolfram.com/xid/0tqle3yb8m54ya-jahxll


https://wolfram.com/xid/0tqle3yb8m54ya-cned8o


https://wolfram.com/xid/0tqle3yb8m54ya-i0r30v


https://wolfram.com/xid/0tqle3yb8m54ya-ihro3s


https://wolfram.com/xid/0tqle3yb8m54ya-bl3pgk


https://wolfram.com/xid/0tqle3yb8m54ya-e6ss


https://wolfram.com/xid/0tqle3yb8m54ya-jzvgdc


https://wolfram.com/xid/0tqle3yb8m54ya-epiiq5


https://wolfram.com/xid/0tqle3yb8m54ya-b0u073


https://wolfram.com/xid/0tqle3yb8m54ya-cf24sd

BooleanCountingFunction 缺省下保留函数形式:

https://wolfram.com/xid/0tqle3yb8m54ya-2e8xg

用 BooleanConvert 转换到其它形式:

https://wolfram.com/xid/0tqle3yb8m54ya-dkn988


https://wolfram.com/xid/0tqle3yb8m54ya-bn11gc

当给出明确的变量列表,BooleanCountingFunction 自动转换:

https://wolfram.com/xid/0tqle3yb8m54ya-ejkjco


https://wolfram.com/xid/0tqle3yb8m54ya-b27wio


https://wolfram.com/xid/0tqle3yb8m54ya-fjzd0o

https://wolfram.com/xid/0tqle3yb8m54ya-fs4nab

https://wolfram.com/xid/0tqle3yb8m54ya-b8bbm9

https://wolfram.com/xid/0tqle3yb8m54ya-f80wda


https://wolfram.com/xid/0tqle3yb8m54ya-lz42bz


https://wolfram.com/xid/0tqle3yb8m54ya-mo6wp0


https://wolfram.com/xid/0tqle3yb8m54ya-bie7ev


https://wolfram.com/xid/0tqle3yb8m54ya-cuk5ig


https://wolfram.com/xid/0tqle3yb8m54ya-nvq12z


https://wolfram.com/xid/0tqle3yb8m54ya-vu18f

应用 (4)用该函数可以解决的问题范例

https://wolfram.com/xid/0tqle3yb8m54ya-gnlgrn

https://wolfram.com/xid/0tqle3yb8m54ya-u9w97

https://wolfram.com/xid/0tqle3yb8m54ya-i4i779

https://wolfram.com/xid/0tqle3yb8m54ya-euib0u


https://wolfram.com/xid/0tqle3yb8m54ya-f67h3j


https://wolfram.com/xid/0tqle3yb8m54ya-bfs2st


https://wolfram.com/xid/0tqle3yb8m54ya-ebxzrw

定义一个布尔函数,当真值变量的数目等于 k 模 m 时,函数为真:

https://wolfram.com/xid/0tqle3yb8m54ya-k8e0ul
当 k=0 且 m=2 时,则得到 Xnor:

https://wolfram.com/xid/0tqle3yb8m54ya-dzd0k3

当 k=1 且 m=2 时,则得到 Xor:

https://wolfram.com/xid/0tqle3yb8m54ya-gao3o0


https://wolfram.com/xid/0tqle3yb8m54ya-e7rznf


https://wolfram.com/xid/0tqle3yb8m54ya-ff5pf5


https://wolfram.com/xid/0tqle3yb8m54ya-dk5vss


https://wolfram.com/xid/0tqle3yb8m54ya-i8bnt

https://wolfram.com/xid/0tqle3yb8m54ya-jffmd2


https://wolfram.com/xid/0tqle3yb8m54ya-b6fozv

求系统的平均无故障时间,该系统由三个组件组成,要求其中两个组件正常工作:

https://wolfram.com/xid/0tqle3yb8m54ya-c42t61

https://wolfram.com/xid/0tqle3yb8m54ya-hk7kx

https://wolfram.com/xid/0tqle3yb8m54ya-dkkjpx

属性和关系 (6)函数的属性及与其他函数的关联
BooleanCountingFunction 按它的参数是对称的:

https://wolfram.com/xid/0tqle3yb8m54ya-h2ycoq


https://wolfram.com/xid/0tqle3yb8m54ya-gm06jw

BooleanCountingFunction 的逻辑组合相应于在指数上集合操作:

https://wolfram.com/xid/0tqle3yb8m54ya-bp412r

https://wolfram.com/xid/0tqle3yb8m54ya-k6hgq4

https://wolfram.com/xid/0tqle3yb8m54ya-q552hg

基本规定可以等价于用 Range 指定:

https://wolfram.com/xid/0tqle3yb8m54ya-br2ddu


https://wolfram.com/xid/0tqle3yb8m54ya-egh492


https://wolfram.com/xid/0tqle3yb8m54ya-7z83f

许多指令可以用 BooleanCountingFunction 的形式指定:

https://wolfram.com/xid/0tqle3yb8m54ya-ls69v
And:

https://wolfram.com/xid/0tqle3yb8m54ya-bds5ax

https://wolfram.com/xid/0tqle3yb8m54ya-fas5ju

Or:

https://wolfram.com/xid/0tqle3yb8m54ya-gsmhqw

https://wolfram.com/xid/0tqle3yb8m54ya-k45jm

Nand:

https://wolfram.com/xid/0tqle3yb8m54ya-hcois

https://wolfram.com/xid/0tqle3yb8m54ya-g18qck

Nor:

https://wolfram.com/xid/0tqle3yb8m54ya-fxv720

https://wolfram.com/xid/0tqle3yb8m54ya-h7j9y

Xor:

https://wolfram.com/xid/0tqle3yb8m54ya-jjq35g

https://wolfram.com/xid/0tqle3yb8m54ya-r2zp

Xnor:

https://wolfram.com/xid/0tqle3yb8m54ya-ew8qcf

https://wolfram.com/xid/0tqle3yb8m54ya-buefqp


https://wolfram.com/xid/0tqle3yb8m54ya-c8xadt

https://wolfram.com/xid/0tqle3yb8m54ya-fiw5x


https://wolfram.com/xid/0tqle3yb8m54ya-irqnwk

https://wolfram.com/xid/0tqle3yb8m54ya-ccslh

BooleanCountingFunction 的真值集的大小是 Subsets 的长度:

https://wolfram.com/xid/0tqle3yb8m54ya-d6h3kx


https://wolfram.com/xid/0tqle3yb8m54ya-hm4qde

BooleanCountingFunction 的真值集的大小可以由组合和给出:

https://wolfram.com/xid/0tqle3yb8m54ya-2b3nj


https://wolfram.com/xid/0tqle3yb8m54ya-gh069s


https://wolfram.com/xid/0tqle3yb8m54ya-g7h9j

巧妙范例 (1)奇妙或有趣的实例
当恰好 i 个变量为真时,BooleanCountingFunction 具有不相交的真值集:

https://wolfram.com/xid/0tqle3yb8m54ya-bx1d5t


https://wolfram.com/xid/0tqle3yb8m54ya-h2r9w

Wolfram Research (2008),BooleanCountingFunction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.
文本
Wolfram Research (2008),BooleanCountingFunction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.
Wolfram Research (2008),BooleanCountingFunction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.
CMS
Wolfram 语言. 2008. "BooleanCountingFunction." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.
Wolfram 语言. 2008. "BooleanCountingFunction." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.
APA
Wolfram 语言. (2008). BooleanCountingFunction. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/BooleanCountingFunction.html 年
Wolfram 语言. (2008). BooleanCountingFunction. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/BooleanCountingFunction.html 年
BibTeX
@misc{reference.wolfram_2025_booleancountingfunction, author="Wolfram Research", title="{BooleanCountingFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/BooleanCountingFunction.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_booleancountingfunction, organization={Wolfram Research}, title={BooleanCountingFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/BooleanCountingFunction.html}, note=[Accessed: 04-April-2025
]}