CircularArcThrough
✖
CircularArcThrough
Details

- CircularArcThrough is typically used to specify point constraints in GeometricScene.
- CircularArcThrough gives an explicit Circle object when possible.
- The pi in CircularArcThrough[{p1,p2,…},…] can be lists of coordinates or explicit Point objects.
- CircularArcThrough can be used with symbolic points and quantities in GeometricScene to constrain points on a circular arc.

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
A circular arc passing through three points:

https://wolfram.com/xid/0fq4uw97ur71m-ex52rz

https://wolfram.com/xid/0fq4uw97ur71m-8omd3e


https://wolfram.com/xid/0fq4uw97ur71m-3jd653

ArcLength of an arc passing through a set of points:

https://wolfram.com/xid/0fq4uw97ur71m-5zszx5

Scope (3)Survey of the scope of standard use cases
CircularArcThrough works on coordinates:

https://wolfram.com/xid/0fq4uw97ur71m-0od1tm


https://wolfram.com/xid/0fq4uw97ur71m-oekcq6

Specify constraints for the center of the circular arc:

https://wolfram.com/xid/0fq4uw97ur71m-b01me0


https://wolfram.com/xid/0fq4uw97ur71m-hm86po

CircularArcThrough works with points in 2D:

https://wolfram.com/xid/0fq4uw97ur71m-7ysgzb

Applications (3)Sample problems that can be solved with this function
Basic Applications (3)
Visualize the arc passing through three points:

https://wolfram.com/xid/0fq4uw97ur71m-nfu42m

https://wolfram.com/xid/0fq4uw97ur71m-hvl9sc

Find the implicit representation of the arc passing through three points:

https://wolfram.com/xid/0fq4uw97ur71m-0x47om

The parametric representation:

https://wolfram.com/xid/0fq4uw97ur71m-dovl1h

Find the circumcircle of a triangle:

https://wolfram.com/xid/0fq4uw97ur71m-zf15dh

https://wolfram.com/xid/0fq4uw97ur71m-6xil7p


https://wolfram.com/xid/0fq4uw97ur71m-6ciqa2

Properties & Relations (5)Properties of the function, and connections to other functions
CircularArcThrough returns a Circle:

https://wolfram.com/xid/0fq4uw97ur71m-9h0c60

https://wolfram.com/xid/0fq4uw97ur71m-oj10iv

Use RegionMember to test point membership:

https://wolfram.com/xid/0fq4uw97ur71m-7u3io1


https://wolfram.com/xid/0fq4uw97ur71m-zrbsng


https://wolfram.com/xid/0fq4uw97ur71m-th9aki

CircularArcThrough gives a circular arc passing through points:

https://wolfram.com/xid/0fq4uw97ur71m-h4lk9x

https://wolfram.com/xid/0fq4uw97ur71m-uzjauh


https://wolfram.com/xid/0fq4uw97ur71m-81c4i3

Use RegionFit to find a circle that fits a set of points:

https://wolfram.com/xid/0fq4uw97ur71m-nbp42n

https://wolfram.com/xid/0fq4uw97ur71m-7ezrw3

The arc passing the first 3 points:

https://wolfram.com/xid/0fq4uw97ur71m-xj5rvr

Use CirclePoints to generate equally spaced points on the unit circle:

https://wolfram.com/xid/0fq4uw97ur71m-y4b22g

An arc passing through points on the unit circle:

https://wolfram.com/xid/0fq4uw97ur71m-hcbyp0

Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.
Text
Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.
Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.
CMS
Wolfram Language. 2022. "CircularArcThrough." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CircularArcThrough.html.
Wolfram Language. 2022. "CircularArcThrough." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CircularArcThrough.html.
APA
Wolfram Language. (2022). CircularArcThrough. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CircularArcThrough.html
Wolfram Language. (2022). CircularArcThrough. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CircularArcThrough.html
BibTeX
@misc{reference.wolfram_2025_circulararcthrough, author="Wolfram Research", title="{CircularArcThrough}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CircularArcThrough.html}", note=[Accessed: 28-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_circulararcthrough, organization={Wolfram Research}, title={CircularArcThrough}, year={2022}, url={https://reference.wolfram.com/language/ref/CircularArcThrough.html}, note=[Accessed: 28-March-2025
]}