WOLFRAM

CircularArcThrough
CircularArcThrough

CircularArcThrough[{p1,p2,}]

represents a circular arc passing through the points pi.

CircularArcThrough[{p1,p2,},q]

represents a circular arc with center q.

CircularArcThrough[{p1,p2,},q,r]

represents a circular arc with radius r.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

A circular arc passing through three points:

Out[2]=2

Display the arc:

Out[3]=3

ArcLength of an arc passing through a set of points:

Out[1]=1

Scope  (3)Survey of the scope of standard use cases

CircularArcThrough works on coordinates:

Out[4]=4

Multiple points:

Out[8]=8

Specify constraints for the center of the circular arc:

Out[1]=1

Constraints on the radius:

Out[2]=2

CircularArcThrough works with points in 2D:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Basic Applications  (3)

Visualize the arc passing through three points:

Out[2]=2

Find the implicit representation of the arc passing through three points:

Out[1]=1

The parametric representation:

Out[2]=2

Find the circumcircle of a triangle:

Out[2]=2
Out[3]=3

Properties & Relations  (5)Properties of the function, and connections to other functions

CircularArcThrough returns a Circle:

Out[7]=7

Use RegionMember to test point membership:

Out[1]=1
Out[2]=2
Out[3]=3

CircularArcThrough gives a circular arc passing through points:

Out[2]=2

Obtain the full circle:

Out[3]=3

Use RegionFit to find a circle that fits a set of points:

Out[2]=2

The arc passing the first 3 points:

Out[3]=3

Use CirclePoints to generate equally spaced points on the unit circle:

Out[1]=1

An arc passing through points on the unit circle:

Out[2]=2
Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.
Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.

Text

Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.

Wolfram Research (2022), CircularArcThrough, Wolfram Language function, https://reference.wolfram.com/language/ref/CircularArcThrough.html.

CMS

Wolfram Language. 2022. "CircularArcThrough." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CircularArcThrough.html.

Wolfram Language. 2022. "CircularArcThrough." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CircularArcThrough.html.

APA

Wolfram Language. (2022). CircularArcThrough. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CircularArcThrough.html

Wolfram Language. (2022). CircularArcThrough. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CircularArcThrough.html

BibTeX

@misc{reference.wolfram_2025_circulararcthrough, author="Wolfram Research", title="{CircularArcThrough}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CircularArcThrough.html}", note=[Accessed: 28-March-2025 ]}

@misc{reference.wolfram_2025_circulararcthrough, author="Wolfram Research", title="{CircularArcThrough}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CircularArcThrough.html}", note=[Accessed: 28-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_circulararcthrough, organization={Wolfram Research}, title={CircularArcThrough}, year={2022}, url={https://reference.wolfram.com/language/ref/CircularArcThrough.html}, note=[Accessed: 28-March-2025 ]}

@online{reference.wolfram_2025_circulararcthrough, organization={Wolfram Research}, title={CircularArcThrough}, year={2022}, url={https://reference.wolfram.com/language/ref/CircularArcThrough.html}, note=[Accessed: 28-March-2025 ]}