# CompositeQ

CompositeQ[n]

yields True if n is a composite number, and yields False otherwise.

# Details and Options

• CompositeQ is typically used to test whether an integer is a composite number.
• A composite number is a positive number that is the product of two integers other than 1.
• CompositeQ[n] returns False unless n is manifestly a composite number.
• For negative integer n, CompositeQ[n] is effectively equivalent to CompositeQ[-n].
• With the setting , CompositeQ determines whether a number is a composite number over Gaussian integers.
• CompositeQ[m+In] automatically works over Gaussian integers.

# Examples

open allclose all

## Basic Examples(2)

Test whether a number is composite:

The number is not composite:

## Scope(4)

CompositeQ works over integers:

Gaussian integers:

Test for large integers:

## Options(1)

### GaussianIntegers(1)

Test whether is composite over integers:

Gaussian integers:

## Applications(9)

### Basic Applications(3)

Highlight composite numbers:

Generate the composite number:

Generate random composite numbers:

The distribution of Gaussian composite numbers:

### Number Theory(6)

Recognize Sierpiński numbers k where is always composite:

Recognize powerful numbers n whose prime factors are all repeated:

All perfect powers are powerful numbers:

Recognize base b pseudoprimes, composite numbers n such that :

Find all base pseudoprimes below :

Find all base pseudoprimes below :

Find large composite numbers of the form :

The distribution of composite numbers over integers:

Plot the distribution:

The distribution of composite numbers over the Gaussian integers:

Plot the distribution:

## Properties & Relations(6)

Primes represents the domain of all prime numbers:

PrimeQ gives False for all composite numbers:

CompositeQ gives False for all primes:

Composite numbers cannot be a MersennePrimeExponent:

Composite numbers have at least two prime factors including multiplicities:

Composite numbers that are the power of a prime number have exactly divisors:

## Neat Examples(2)

Plot composite numbers that are the sum of three squares:

Plot the Ulam spiral where numbers are colored based on their compositeness:

Wolfram Research (2014), CompositeQ, Wolfram Language function, https://reference.wolfram.com/language/ref/CompositeQ.html.

#### Text

Wolfram Research (2014), CompositeQ, Wolfram Language function, https://reference.wolfram.com/language/ref/CompositeQ.html.

#### CMS

Wolfram Language. 2014. "CompositeQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CompositeQ.html.

#### APA

Wolfram Language. (2014). CompositeQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CompositeQ.html

#### BibTeX

@misc{reference.wolfram_2023_compositeq, author="Wolfram Research", title="{CompositeQ}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/CompositeQ.html}", note=[Accessed: 28-September-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2023_compositeq, organization={Wolfram Research}, title={CompositeQ}, year={2014}, url={https://reference.wolfram.com/language/ref/CompositeQ.html}, note=[Accessed: 28-September-2023 ]}