ContinuousWaveletData
yields a continuous wavelet data object with wavelet coefficients coefi corresponding to octave and voice {octi,voci} and wavelet wave.
Details and Options



- ContinuousWaveletData[{{oct1,voc1}->coef1,…},…] is always converted to an optimized standard form with structure ContinuousWaveletData[coefs,octvocs,…].
- The coefficients coefi can be vectors, Sound[…], or SampledSoundList[…] objects.
- The options used by ContinuousWaveletTransform can also be used as options to ContinuousWaveletData.
- In standard output format, only the number of octaves, voices, and dimensions of the original data are printed.
- Normal[ContinuousWaveletData[…]] gives a list of rules {{oct1,voc1}->coef1,{oct2,voc2}->coef2,…} which gives the correspondence between each octave and voice {octi,voci} and the corresponding coefficient array coefi.
- ContinuousWaveletData represents a continuous wavelet transform
at multiple scales
.
- Each scale
is specified by an octave number
and voice number
and is given by
.
- The scale {oct,voc} can be used to extract wavelet coefficients from a ContinuousWaveletData object cwd. The following specifications can be given:
-
cwd[{oct,voc}] extract coefficients corresponding to {oct,voc} cwd[{{oct1,voc1},{oct2,voc2},…}] extract several wavelet coefficient arrays cwd[ovpatt] extract all coefficients whose scale matches ovpatt cwd[All] extract all coefficients - By default, coefficients are returned as a list of rules {{oct1,voc1}->coef1,{oct2,voc2}->coef2,…}.
- cwd[…,{form1,form2,…}] can be used to control the output form. Possible formi include:
-
"Rules" rules {{oct1,voc1}->…} "Values" coefficients only "Inverse" inverse transform individual coefficients "ListPlot" simple list plots for 1D coefficients "Sound" sound objects for sound coefficients "SampledSoundList" sampled sound objects for sound coefficients - Properties of a wavelet representation are obtained from ContinuousWaveletData[…]["prop"].
- ContinuousWaveletData[…]["Properties"] gives a list of properties available for the ContinuousWaveletData object.
- Properties related to transform coefficients include:
-
"Octaves" the number of octaves used "Voices" the number of voices per octave used "Scales" wavelet scales used "Wavelet" wavelet family used "WaveletScale" smallest resolvable scale "WaveletIndex" list of all wavelet indices {octi,voci} "LogScalogramFunction" gives the function "LinearScalogramFunction" gives the function - Properties related to input data include:
-
"DataDimensions" dimensions of original data "DataChannels" the number of channels of data "DataMean" the mean of original data "DataWrapper" wrapper function applied to data after reconstruction "SampleRate" sample rate used for input data
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Get a ContinuousWaveletData object:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bggie2

The ContinuousWaveletData represents arrays of coefficients at different scales {oct,voc}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-clgxrw

Extract properties including numerical scale corresponding to each {oct,voc}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-j4ukwq

Compute the inverse wavelet transform of arbitrary continuous wavelet transform coefficients:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-i3o0fe

Scope (12)Survey of the scope of standard use cases
Basic Uses (10)
Get a ContinuousWaveletData object from ContinuousWaveletTransform:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dua9ap

Show the list of computed scales {oct,voc}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fho3xu

Get the coefficient arrays as a list of rules:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dwznbn

InverseContinuousWaveletTransform operates on ContinuousWaveletData:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-cgp6wm

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-3exuz

With enough octaves and voices, the inverse transform gives an accurate reconstruction:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-kbjry7

Extract coefficients corresponding to specific octaves and voices:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-q1m6j

Extract a single coefficient array:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ewddiq

Extract all coefficients in the first octave using the pattern {1,_}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-kdvwmd

Specify a list including both specific {oct,voc} and patterns:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bas555

Get coefficient arrays in different forms:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-igjnm6

Get as a list of rules (default):

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-xstdo


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fi53sf

Get coefficients as small list plots:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bbagie

Get an inverse transform of each coefficient array:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-1ojkx


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bfa3z1

Get sound wavelet coefficients as Sound objects:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-c5i7eb


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-efuxli

Extract properties of the wavelet transform data:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ca22gi

Number of octaves and voices, and wavelet used:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bhkppp


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fcmoa

Use ContinuousWaveletData in other wavelet functions:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-5ve1p

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-x0a1p


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-zw6ko


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-f7srhe

Transform ContinuousWaveletData:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ccpsk

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-in57yu

Apply an arbitrary function to each coefficient:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-c0frxo

Set all coefficients matching a specified {oct,voc} to zero:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dtle8m


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-f31e44

Construct a ContinuousWaveletData object from a list of rules giving coefficient arrays:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-d7j35v

The result represents a range of octaves and voices including the specified coefficients:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ei3p5y

The other coefficients are assumed to be zero:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-h2s7um

Construct a ContinuousWaveletData object using a specified wavelet:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-islkuu

The specified wavelet is used in the inverse transform:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dgjcuc

Properties (2)
Get properties of the continuous wavelet transform:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-cwo7hg

Wavelet and wavelet scale used:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dvucjy

Properties of transform coefficients, including number of octaves and voices:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-irom8w

List of all available {oct,voc}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-i4upjp

Numerical scales corresponding to each {oct,voc}:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-duczw1

Properties related to input data:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-g77h01

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-btkqm6

Data dimensions, number of audio channels, and sample rate:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-2b963

Wrapper function that is automatically applied to the result of an inverse transform:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-e509ba


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ko26av

Options (5)Common values & functionality for each option
SampleRate (1)
For Sound input, SampleRate is automatically computed:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-xc74fv


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-u0mal1

By default, SampleRate is extracted from the first coefficient rule:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-vh5x4x

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-45juhj


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-8fcs5p

Specify SampleRate explicitly:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-5n0c5k

WaveletScale (2)
By default, WaveletScale is automatically computed:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-27hc1i

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-3zaus0


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-6qn914


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-i05g7p


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-kj84om

Explicitly set WaveletScale:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-oxidu2


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-dp4fu9

WorkingPrecision (2)
By default, WorkingPrecision->MachinePrecision is used:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fvcmsi


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-qlff3u


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-7qfsoe

Use higher-precision computation:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-6lkrhl

With numbers close to zero, accuracy is the better indicator of the number of correct digits:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-cqyqyd

Properties & Relations (5)Properties of the function, and connections to other functions
The length of each wavelet coefficient array equals the length of the data:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fm6yrb


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fujd56

ContinuousWaveletData represents continuous transform coefficients at a set of scales:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fpkibb


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-ohmn9

DiscreteWaveletData represents a tree of discrete transform coefficients:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-zzvt6


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-jalso3

Reconstruct a ContinuousWaveletData from its coefficients and properties:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bfsdx

Specify the coefficients and the wavelet used:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-gd9q04

The data dimensions are determined from the coefficients:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-u5chd


https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-9hi4n7

Equivalent ways to get all coefficients as a list of rules:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-gja6x7

Use Normal:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-kygfk

Explicitly extract All coefficients:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-e6kezw

Specify the pattern Blank[] (_), which matches any octave and voice:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-bhh5s

Equivalent ways to get only coefficient lists:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-i1xfk7

Apply Last to each rule returned by cwd[{oct,voc}]:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-by6nzu

Use Part:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fbkorx

Explicitly get only coefficient values:

https://wolfram.com/xid/0bswe5jb6i7vyzk8wy-fgn9vv

Wolfram Research (2010), ContinuousWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/ContinuousWaveletData.html.
Text
Wolfram Research (2010), ContinuousWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/ContinuousWaveletData.html.
Wolfram Research (2010), ContinuousWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/ContinuousWaveletData.html.
CMS
Wolfram Language. 2010. "ContinuousWaveletData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ContinuousWaveletData.html.
Wolfram Language. 2010. "ContinuousWaveletData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ContinuousWaveletData.html.
APA
Wolfram Language. (2010). ContinuousWaveletData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ContinuousWaveletData.html
Wolfram Language. (2010). ContinuousWaveletData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ContinuousWaveletData.html
BibTeX
@misc{reference.wolfram_2025_continuouswaveletdata, author="Wolfram Research", title="{ContinuousWaveletData}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/ContinuousWaveletData.html}", note=[Accessed: 25-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_continuouswaveletdata, organization={Wolfram Research}, title={ContinuousWaveletData}, year={2010}, url={https://reference.wolfram.com/language/ref/ContinuousWaveletData.html}, note=[Accessed: 25-March-2025
]}