DirichletBeta
gives the Dirichlet beta function .
Details
- The Dirichlet beta function is also known as the Catalan beta function.
- DirichletBeta is a mathematical function, suitable for both symbolic and numeric manipulation.
- For , the Dirichlet beta function is defined as .
- For certain special arguments, DirichletBeta automatically evaluates to exact values.
- DirichletBeta is an entire function with branch cut discontinuities.
- DirichletBeta can be evaluated to arbitrary numerical precision.
- DirichletBeta automatically threads over lists.
Examples
open allclose allBasic Examples (4)
Scope (7)
DirichletBeta is neither non-decreasing nor non-increasing:
DirichletBeta is not injective:
DirichletBeta is neither non-negative nor non-positive:
DirichletBeta is neither convex nor concave:
Compute special values of derivatives:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix DirichletBeta function using MatrixFunction:
Text
Wolfram Research (2014), DirichletBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletBeta.html.
CMS
Wolfram Language. 2014. "DirichletBeta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DirichletBeta.html.
APA
Wolfram Language. (2014). DirichletBeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletBeta.html